(Действующий) Национальный стандарт РФ ГОСТ Р 8.736-2011 "Государственная система...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
, .
(5)
Сравнивают и с теоретическим значением критерия Граббса при выбранном уровне значимости q. Таблица критических значений критерия Граббса приведена в приложении А.
Если , то исключают как маловероятное значение. Если , то исключают как маловероятное значение. Далее вновь вычисляют среднее арифметическое и среднее квадратическое отклонения ряда результатов измерений и процедуру проверки наличия грубых погрешностей повторяют.
Если , то не считают промахом и его сохраняют в ряду результатов измерений. Если , то не считают промахом и его сохраняют в ряду результатов измерений.

7 Доверительные границы случайной погрешности

7.1 Доверительные границы случайной погрешности оценки измеряемой величины в соответствии с настоящим стандартом устанавливают для результатов измерений, принадлежащих нормальному распределению.
При невыполнении этого условия методы вычисления доверительных границ случайной погрешности должны быть указаны в методике измерений.
7.2 При числе результатов измерений принадлежность их к нормальному распределению не проверяют. При этом вычисление доверительных границ случайной погрешности оценки измеряемой величины по методике, предусмотренной настоящим стандартом, допускается только в том случае, если заранее известно, что результаты измерений принадлежат нормальному распределению.
Примечание - Если не известно распределение погрешностей оценки искомой величины, способы нахождения доверительных границ случайной погрешности могут быть указаны в методике измерений с учетом того, что подобные измерения повторяют.
7.3 При числе результатов измерений для проверки принадлежности их к нормальному распределению предпочтителен составной критерий, приведенный в приложении Б.
7.4 При числе результатов измерений n > 50 для проверки принадлежности их к нормальному распределению предпочтителен один из критериев: К. Пирсона или Мизеса-Смирнова. Критерий К. Пирсона приведен в приложении В, критерий Мизеса-Смирнова - в приложении Г.
7.5 Доверительные границы (без учета знака) случайной погрешности оценки измеряемой величины вычисляют по формуле
,
(6)
где t - коэффициент Стьюдента, который в зависимости от доверительной вероятности Р и числа результатов измерений n находят по таблице, приведенной в приложении Д.

8 Доверительные границы неисключенной систематической погрешности

8.1 Неисключенная систематическая погрешность (далее - НСП) оценки измеряемой величины образуется из составляющих, в качестве которых могут быть приняты НСП:
- метода;
- средства измерений;
- вызванные другими источниками.
В качестве границ составляющих НСП принимают, например, пределы допускаемых основных и дополнительных погрешностей средств измерений, если случайные составляющие погрешности пренебрежимо малы.
8.2 Границу НСП оценки измеряемой величины при наличии менее трех (m < 3) НСП, каждая из которых представлена границами , оценивают по формуле
.
(7)
8.3 При наличии трех и более составляющих НСП распределение внутри границ этих составляющих (погрешности средств измерений каждого типа, погрешности поправок и т.д.) рассматривают как распределение случайных величин. При отсутствии данных о виде распределения случайных величин их распределения принимают равномерными.
8.4 При числе составляющих НСП более или равном трем ( ) доверительные границы НСП оценки измеряемой величины вычисляют путем построения композиции НСП. При равномерном распределении НСП доверительные границы допускается вычислять по формуле
,
(8)
где - граница i-й НСП;
k - коэффициент, определяемый принятой доверительной вероятностью, числом составляющих НСП и их соотношением между собой.
Для доверительной вероятности Р = 0,95 коэффициент k пренебрежимо мало зависит от числа составляющих НСП и их соотношения, поэтому при указанной доверительной вероятности коэффициент k принимают равным 1,1.
Для доверительной вероятности Р = 0,99 коэффициент k принимают равным 1,4, если число суммируемых НСП более четырех (m > 4). Если же число суммируемых НСП равно четырем или менее четырех ( ), то коэффициент k определяют по графику зависимости k = f(m, I), приведенному на рисунке 1, где ось абсцисс соответствует значениям отношения . На рисунке 1 кривая 1 соответствует m = 2; кривая 2 - m = 3; кривая 3 - m = 4.
При трех или четырех суммируемых НСП в качестве принимают составляющую, по числовому значению наиболее отличающуюся от других, в качестве следует принять ближайшую к составляющую.
8.5 Если НСП появляется в результате исключения систематической погрешности от воздействия влияющей величины Y на измеряемую величину X, то при исключении систематической погрешности, возникающей из-за изменения этой влияющей величины, необходимо определить зависимость измеряемой величины от влияющей величины [например, Х = f(Y)]. В этом случае при вычислении границ НСП оценки измеряемой величины необходимо учитывать коэффициент влияния , получаемый при разложении функции влияния в ряд Тейлора.
При наличии одной НСП, представленной границами, и второй НСП, представленной с коэффициентом влияния, формула (7) будет иметь вид
.
(9)
При суммировании не более трех НСП ( ), полученных от воздействия влияющих величин (и при отсутствии НСП, возникающих при непосредственном влиянии систематической погрешности на измеряемую величину), формула (7) будет иметь вид
.
(10)
При наличии числа НСП, представленных границами, и числа НСП, полученных от воздействия влияющих величин и представленных с коэффициентами влияния, формула (8) будет иметь вид
.
(11)
Доверительную вероятность для вычисления границ неисключенной систематической погрешности принимают той же, что при вычислении доверительных границ случайной погрешности результата измерения.

9 Доверительные границы погрешности оценки измеряемой величины

9.1 Доверительные границы погрешности оценки измеряемой величины находят путем построения композиции распределений случайных погрешностей и НСП, рассматриваемых как случайные величины в соответствии с 8.3. Если доверительные границы случайных погрешностей найдены в соответствии с разделом 7, границы погрешности оценки измеряемой величины (без учета знака) вычисляют по формуле
,
(12)
где К - коэффициент, зависящий от соотношения случайной составляющей погрешности и НСП.
Суммарное среднее квадратическое отклонение оценки измеряемой величины вычисляют по формуле
,
(13)
где - среднее квадратическое отклонение НСП, которое оценивают в зависимости от способа вычисления НСП по формуле
,
(14)
где - границы НСП, которые определяют по одной из формул (7), (9), (10) или
,
(15)
где - доверительные границы НСП, которые определяют по одной из формул (8), (11);