(Действующий) Национальный стандарт РФ ГОСТ Р ИСО 22514-1-2015 "Статистические...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
3.3.10 статистика воспроизводимости (процесса), QCS (quality capability statistic, QCS): Статистика, позволяющая количественно охарактеризовать воспроизводимость процесса (3.3.2) по характеристике качества (3.1.9).
Примечание 1 - Статистика воспроизводимости процесса обычно является функцией дисперсии или дисперсии и параметра положения.
Примечание 2 - Статистика воспроизводимости качества может быть использована в качестве наблюдаемой, требуемой или реализуемой и т.д.

4 Обозначения

В настоящем стандарте применены следующие обозначения.
- индекс воспроизводимости процесса измерений;
- индекс воспроизводимости измерительной системы;
и - индексы воспроизводимости;
, , , - индексы пригодности машины;
, , , - индексы воспроизводимости процесса;
, , . - индексы пригодности процесса;
- целевой индекс воспроизводимости процесса;
L - нижняя граница поля допуска;
- стандартное отклонение генеральной совокупности исследуемой характеристики;
- оценка стандартного отклонения по наблюдениям исследуемой характеристики;
U - верхняя граница поля допуска;
- математическое ожидание генеральной совокупности исследуемой
характеристики;
- квантиль распределения уровня 99,865%;
- квантиль распределения уровня 50%;
- квантиль распределения уровня 0,135%;
- квантиль стандартного нормального распределения уровня (1 - );
- функция распределения стандартного нормального распределения.

5 Предварительные условия применения

5.1 Аспекты установления требований
Как правило, продукция может быть описана одной или несколькими характеристиками качества. При проектировании продукции разрабатывают требования к продукции в виде требований к характеристикам, часто называемых требованиями потребителя. Эти требования к продукции должны быть полными, что выполняется только в случае, когда все предназначенные функции продукции описаны однозначно. В большинстве случаев, однако, требования не являются полными, поскольку некоторые свойства продукции описаны недостаточно четко. Это приводит к дополнительной неопределенности оценок пригодности или воспроизводимости процессов.
5.2 Распределение и объем выборки
Индексы воспроизводимости и пригодности описывают свойства хвостов распределений характеристик продукции. Различным семействам распределений соответствуют различные свойства и поэтому оценки индексов сильно зависят от выбранного распределения. Таким образом, распределение должно быть выбрано правильно.
На первом этапе следует определить объем выборки и частоту ее отбора, которые необходимы для анализа процесса.
Общий объем выборки, на которой основаны вычисления, следует выбирать в зависимости от желаемого уровня доверия, точности и типа исследуемого процесса, выбранный объем должен обеспечивать достоверность статистического анализа. Обычно общий объем данных составляет более 100 наблюдений.
В случаях, когда предполагают, что данные подчиняются не нормальному распределению, необходимо существенно увеличить объем выборки для определения вида соответствующего распределения. Это может потребовать увеличения количества данных на 50%.
5.3 Материалы, используемые в исследованиях
Весь материал и продукция, которые будут использованы в исследованиях, должны соответствовать установленным требованиям. В зависимости от цели исследования нежелательно использовать материалы, не соответствующие установленным требованиям, так как это может привести к ошибочным выводам. В случае расчета индексов пригодности машин, приемлемость материалов не ограничивается только соответствием допускам.
Во всех исследованиях необходимо убедиться, что источниками изменчивости исследуемых объектов являются только исследуемые источники. В случае исследования воспроизводимости измерений см. 7.6.
5.4 Особые обстоятельства
Во многих случаях наблюдаемый процесс является результатом нескольких различных процессов. Типичным примером может быть изделие из пластмассы, при производстве которого используют материалы из различных резервуаров, или многопоточный процесс.
В таких случаях каждый отдельный резервуар необходимо рассматривать как самостоятельный процесс и анализировать отдельно. После анализа резервуары могут быть объединены, если заказчику необходим единый индекс воспроизводимости и объединенный процесс удовлетворяет установленным требованиям.

6 Сбор данных

6.1 Прослеживаемость данных
Для всех исследований важно, чтобы собранные данные были прослеживаемыми, а используемые значения (особенно сильно отличающиеся от других) могли быть исследованы. Это означает, что преобладающие условия во время исследования следует определить и зафиксировать. По крайней мере, последовательность собранных данных следует сохранить в виде графика. Этот график временной последовательности данных очень полезен для выявления возможных неожиданных изменений. Такие изменения следует исследовать и затем принять решение о возможности использования таких данных. При сборе данных для анализа процесса полезно ведение журнала для записи всех параметров настройки процесса и мониторинга всех событий в процессе исследований, таких как регулировки, колебания температуры или смена персонала.
6.2 Неопределенность измерений
При записи результатов измерений важно добавить некоторые указания о качестве этих результатов. Неопределенность всегда присутствует в результатах измерений исследуемых характеристик, ее следует оценить и сопоставить с требованиями спецификации и изменчивостью процесса. Это означает, что используемое измерительное оборудование должно иметь метрологические характеристики, достаточные для выполнения измерений.
Упрощенная процедура оценки неопределенности измерений - оценка воспроизводимости результатов измерений в соответствии с ИСО 22514-7.
Требования к воспроизводимости процесса измерений, установленные в ИСО 22514-7, . Если процесс измерений соответствует менее 1,33, то такой процесс не следует использовать в его текущем состоянии, так как при этом, вполне вероятно, изменчивость процесса не выявлена. Дальнейшую информацию о неопределенности измерений см. в ИСО 22514-7.
6.3 Регистрация данных
Наблюдения следует регистрировать с указанием условий измерений, а также данных о качестве исходных материалов, используемых оборудовании, инструментах и т.п., а также индивидуальных особенностей операторов и т.п.
6.4 Выбросы
Выбросы представляют собой подмножество наблюдений из набора данных, которые заметно отличаются от остальных данных. Часть данных может принадлежать другой совокупности или быть результатом неправильной их регистрации или большой погрешности измерений.
Существуют сомнения в том, что они принадлежат к той же генеральной совокупности, что и остальные данные. Этот вопрос необходимо исследовать. Использование выбросов может привести к ошибочным выводам о фактической изменчивости процесса.
Выбросы могут появиться, например, в случаях, когда измерение неправильно записано, инструмент ненадлежащим образом калиброван, появились условия или явления, не поддающиеся контролю, которые могли повлиять на результат измерений, или произошла ошибка при регистрации данных.