Действующий
Достоверность, надежность и ограничения любой информации, которая используется в оценке, должна оцениваться с учетом:
- тенденции и закономерности, включая периодичность, которые указывают на то, что может повлиять на будущее;
- корреляции, которые могут дать указания на возможные причинно-следственные отношения для дальнейшей проверки.
Прошлые данные нельзя считать применимыми в будущем, но они могут дать указание лицам, принимающим решения, о том, что более или менее вероятно в будущем может произойти.
Модель является приблизительным представлением реальности. Ее назначение состоит в том, чтобы преобразовать то, что может быть изначально сложной ситуацией, в более простые вещи, которые легче проанализировать. Модель можно использовать, чтобы помочь понять смысл данных и имитировать то, что может произойти на практике при разных условиях. Модель может быть физической, представленной в программном обеспечении или быть набором математических отношений.
- формирование выводов по результатам моделирования в отношении проблемы, существующей в реальном мире.
Каждый из этих этапов может включать в себя приближения, допущения и экспертные оценки и (если возможно) они должны быть проверены людьми, которые не связаны с разработчиками. Критические предположения в отношении доступной информации следует пересмотреть и оценить их достоверность.
- входные данные являются точными и надежными или характер модели учитывает надежность используемых входных данных;
- проведением анализа чувствительности для проверки того, насколько чувствительна модель к изменениям входных параметров;
- сравнением результатов с прошлыми данными (за исключением тех данных, на которых модель была разработана);
- проверкой того, что полученные результаты являются подобными, когда модель используется разными людьми;
Должна быть сохранена полная документация по модели, теориям и предположениям, на которых она основана, достаточная для проверки модели.
Программное обеспечение может использоваться для представления и организации данных или для их анализа. Программы для анализа часто предоставляют упрощенный пользовательский интерфейс и быстрый вывод данных, что может приводить к недопустимым результатам, которые незаметны для пользователя. Недействительные результаты могут возникнуть из-за:
- допущений, сделанных при разработке и использовании модели, лежащей в основе программного обеспечения;
Коммерческое программное обеспечение часто является черным ящиком (коммерческая тайна) и может содержать любую из этих ошибок.
Новое программное обеспечение должно быть проверено с использованием простой модели с входами, имеющими известный выход, прежде чем перейти к тестированию более сложных моделей. Результаты тестирования должны быть сохранены для использования в будущих версиях обновлений программы или для новых программ анализа данных.
Ошибки в построенной модели можно проверить, увеличивая или уменьшая входные параметры, чтобы определить, изменяются ли выходные параметры, как это от них ожидается. Это может быть применено к каждому из различных входных параметров. Ошибки входных данных часто идентифицируются при изменении входных данных. Этот подход также предоставляет информацию о чувствительности модели к изменениям данных.