Действующий
До и во время оценки риска необходимо собирать актуальную информацию, которая используется в качестве входных данных для статистического анализа, моделирования или применения технологий, описанных в приложениях А и Б. В некоторых случаях информация может использоваться лицами, принимающими решения, без дальнейшего анализа.
Информация, необходимая в каждом случае, зависит от результатов более раннего сбора информации, цели и объема оценки, технологии или технологий, которые будут использоваться для анализа. Требуется также определить способ сбора, хранения и предоставления информации.
Одновременно с решением о получении результатов оценки риска необходимо принять решение о том, как эти результаты будут получены, как будет организовано их хранение, как они будут актуализироваться и каким образом будут предоставляться причастным сторонам. Также необходимо указывать источники получения информации.
Информация может быть собрана из таких источников, как обзоры литературы, наблюдения и мнения экспертов. Данные могут быть собраны или получены из измерений, экспериментов, интервью и опросов.
Обычно данные прямо или косвенно представляют собой историю произошедших потерь или выгод. Примеры таких данных включают провалы или успехи проекта, количество полученных жалоб, финансовую прибыль или убытки, последствия для здоровья, травмы и смертельные случаи и т.д. Дополнительная информация также может быть полезна, например причины неудач или успехов, источники жалоб, характер травм и т.д. Данные могут также включать вывод из моделей или результаты других методов анализа.
Когда данные, подлежащие анализу, получаются из выборки, требуемая статистическая достоверность должна быть заранее определена так, чтобы собранных данных было достаточно для анализа. Если статистический анализ не требуется, это также должно быть указано.
Если доступны данные или результаты предыдущих оценок, сначала необходимо установить, было ли какое-либо изменение в параметрах, и если да, то остаются ли предыдущие данные или результаты актуальными.
Достоверность, надежность и ограничения любой информации, которая используется в оценке, должна оцениваться с учетом:
- тенденции и закономерности, включая периодичность, которые указывают на то, что может повлиять на будущее;
- корреляции, которые могут дать указания на возможные причинно-следственные отношения для дальнейшей проверки.
Прошлые данные нельзя считать применимыми в будущем, но они могут дать указание лицам, принимающим решения, о том, что более или менее вероятно в будущем может произойти.
Модель является приблизительным представлением реальности. Ее назначение состоит в том, чтобы преобразовать то, что может быть изначально сложной ситуацией, в более простые вещи, которые легче проанализировать. Модель можно использовать, чтобы помочь понять смысл данных и имитировать то, что может произойти на практике при разных условиях. Модель может быть физической, представленной в программном обеспечении или быть набором математических отношений.
- формирование выводов по результатам моделирования в отношении проблемы, существующей в реальном мире.
Каждый из этих этапов может включать в себя приближения, допущения и экспертные оценки и (если возможно) они должны быть проверены людьми, которые не связаны с разработчиками. Критические предположения в отношении доступной информации следует пересмотреть и оценить их достоверность.