(Действующий) Межгосударственный стандарт ГОСТ ИСО 8041-2006 "Вибрация. Воздействие...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
где - частота среза фильтра.
function у - isofilwk(x,fs)
%ISOFILWK
Filter ISO 8041 Wk, whole body, vertical direction
%у = isofilwk(x, fs);
%у output signal vector, acceleration
%x input signal vector, acceleration
%fs sampling frequency Hz
%bilinear transformation algorithm is used
f1 = 0.4;
f2 = 100;
f3 = 12.5;
f4 = 12.5;
Q4 = 0.63;
f5 = 2.37;
Q5 = 0.91;
f6 = 3.35;
Q6 = 0.91;
w3 = 2*pi*f3;
w4 = 2*pi*f4;
w5 = 2*pi*f5;
w6 = 2*pi*f6;
nyq = fs/2;% Nyquist frequency
%
% band limiting high pass and low pass
%
[b1,a1] = butter(2, f1/nyq, 'high1);% High pass
[b2,а2] =butter(2, f2/nyq);% Low pass
%
% a-v transition
%
B3 = [1/w3 1];
A3 = [1/w4/w4 1/Q4/w4 1];
[b3,а3] =biIinear(B3,A3,fs);
%
% upward step
%
B4 = [1/w5/w5 1/Q5/w5 1]*w5*w5/w6/w6;
A4 = [1/w6/w6 1/Q6/w6 1];
[b4,а4] = bilinear(B4,A4,fs);
%
% Apply filter to input signal vector x (output to signal vector y)
%
y = filter(b2,a2,x);
y = filter(b1/a1/y);
y = filter(b3,a3,y);
y = filter(b4,a4,y);
Рисунок С.1 - Пример программы, реализующей фильтр
______________________________
* MATLAB является примером подходящего для использования в данной ситуации коммерческого продукта. Эта информация дана только для удобства пользователей настоящего стандарта. Ее не следует рассматривать как рекламную поддержку данного продукта.
Приложение D
(рекомендуемое)

Измерение текущего среднеквадратичного значения корректированного ускорения

D.1 Линейное усреднение

Для практической реализации измерения текущего среднеквадратичного значения корректированного ускорения с использованием линейного усреднения [см. формулу (3)] применяют цифровые методы обработки сигнала, позволяющие хранить большие массивы данных (выборочных значений сигнала) - см. рисунок D.1.

D.2 Экспоненциальное усреднение

Метод экспоненциального усреднения [см. формулу (4)] долгое время являлся доминирующим при измерении шума и вибрации, воздействующих на человека. Вначале этот метод был стандартизован для шумомеров (характеристики "медленно" с постоянной времени 1 с и "быстро" с постоянной времени 0,125 с-см. [6]), а потом и для средств измерений вибрации. Экспоненциальное усреднение называют также "экспоненциальным интегрированием". Схема реализации данного метода показана на рисунке D.2.

D.3 Сравнение двух методов усреднения

Результаты, полученные с использованием формул (3) и (4), могут существенно различаться. Существует два основных правила обеспечения приблизительной эквивалентности результатов, полученных двумя вышеупомянутыми методами, которые применяют для разных видов измерений и типов вибрационного сигнала.
Правило 1. Для импульсных сигналов (ударов) время интегрирования при линейном усреднении выбирают равным постоянной времени при экспоненциальном усреднении (см. рисунок D.3).
Это обеспечивает наилучшее совпадение результатов измерений максимального кратковременного среднеквадратичного значения, однако и в данном случае возможны значительные расхождения в результатах измерений, которые зависят от длительности и формы импульсного сигнала.
Правило 2. Для случайного сигнала время интегрирования при линейном усреднении выбирают в два раза большим постоянной времени при экспоненциальном усреднении (см. рисунок D.4). Это обеспечивает наилучшее соответствие статистических параметров измерений текущего среднеквадратичного значения корректированного ускорения (дисперсия, доверительный интервал и др.).
То же самое справедливо для последовательности импульсов или периодических сигналов с небольшим шумом, однако при этом в случае линейного усреднения результат может сильно зависеть от соотношения времени интегрирования и периода сигнала.
Приложение Е
(рекомендуемое)

Характеристики датчика вибрации

Е.1 Общие положения

Выбор датчиков вибрации, применяемых в задачах измерения вибрации, воздействующей на человека, зависит от многих факторов, в частности:
- целей применения (измерение локальной, общей и общей низкочастотной вибрации);
- назначения измерений (для оценки влияния вибрации на здоровье, комфорт или оценки чувствительности к вибрации);
- условий окружающей среды (например, температуры воздуха, влажности, запыленности);
- условий крепления (например, крепление на легкие конструкции, крепление в условиях ограниченного пространства для установки датчика).
Характеристики датчиков в настоящем приложении приведены исходя из задачи оценки влияния вибрации на здоровье человека. Для других целей измерения требования к характеристикам могут быть ослаблены или, наоборот, ужесточены.
Примечание - Требования настоящего стандарта установлены исходя из того, что величиной, измеряемой датчиком вибрации, является ускорение. Однако датчики, измеряющие другие параметры движения, в частности скорость, также могут быть использованы при условии удовлетворения установленных требований. При этом требования испытаний с использованием тестовых электрических сигналов должны быть соответствующим образом изменены.

Е.2 Характеристики

Рекомендуемые минимальные характеристики датчиков вибрации приведены в таблице Е.1 (могут быть применены не во всех случаях).
Таблица Е.1 - Характеристики датчика вибрации в зависимости от применения
Параметр
Общие рекомендации исходя из влияния на неопределенность измерений
Применение
Локальная вибрация
Общая вибрация
Общая низкочастотная вибрация
на транспорте
внутри помещений
Максимальная общая масса (всех датчиков и системы крепления)Менее 10% эффективной массы вибрирующей конструкции
30 г
450 г на сиденье 50 г в других местах
1 кг
1 кг
Максимальная масса датчика-
5 г
50 г
200 г
200 г
Максимальный общий размер (всех датчиков и системы крепления)Небольшой, чтобы оказывать минимальное влияние на деятельность человека
Кубик размером 25 мм
На сиденье: полужесткий диск (см. F.2) диаметром 300 мм и высотой 12 мм
В других местах: кубик размером 30 мм
200x200x50 мм
200x200x100 мм
Максимальная высотаРасстояние между измерительной осью датчика параллельной вибрирующей поверхности и самой этой поверхностью должно быть мало, чтобы избежать усиления угловых составляющих ускорения
10 мм
10 мм
25 мм
25 мм
Диапазон температур-
От -10°С
до + 50°С
От - 10°С
до +50°С
От - 10°С
до + 50°С
От - 10°С
до + 50°С
Чувствительность к электромагнитным полям (30 мТл на частоте 50 или 60 Гц)
Менее 30 м/с2/Тл
Менее 5 м/с2/Тл
Менее 2 м/с2/Тл
Менее 2 м/с2/Тл
Чувствительность к акустическому давлению-
Менее 0,05 м/с2/кПа
Менее 0,01 м/с2/кПа
Менее 0,01 м/с2/кПа
Менее 0,01 м/с2/кПа
Коэффициент преобразования в поперечном направлении-
Менее 5%
Менее 5%
Менее 5%
Менее 5%
Максимальное ускорениеДатчик должен выдерживать высокие ударные ускорения, которым он может быть подвергнут во время эксплуатации, с сохранением заданной точности измерений в заданном диапазоне частот
30000 м/с2 (в отдельных случаях, например, при измерении вибрации пневматических молотков) до 50000 м/с2)
1000 м/с2
500 м/с2
500 м/с2
Минимальная резонансная частотаПримерно в 10 раз выше верхней границы номинального диапазона частот
10 кГц
800 Гц
800 Гц
5 Гц
Минимальная защита оболочкамиДля защиты от воздействия влаги и пыли (в зависимости от конкретного применения - измерения в лабораторных условиях, во взрывоопасных средах и пр. - могут быть установлены другие требования к оболочкам)
IP55
IP55
IP55
Приложение F
(рекомендуемое)

Испытания системы крепления датчика вибрации

F.1 Измерения локальной вибрации

F.1.1 Введение

Система крепления, используемая при измерениях локальной вибрации, должна иметь малую массу и размеры и высокую жесткость, чтобы выходной сигнал датчика вибрации как можно более точно воспроизводил ускорение вибрирующей поверхности.
В настоящем приложении приведены основные методы испытаний систем крепления однокомпонентного и трехкомпонентного датчиков вибрации.

F.1.2 Требования

F.1.2.1 Метод испытаний

Во время испытаний акселерометр устанавливают так, как показано на рисунке F.1. Эталонный акселерометр должен удовлетворять всем требованиям настоящего стандарта. Испытанию подвергают систему крепления и акселерометр, которые предназначены для использования в составе средства измерений, проверяемого на соответствие требованиям настоящего стандарта.
Для испытаний используют жесткие рукоятки в форме цилиндра диаметром 25 мм и длиной 125 мм. Вибрация должна воздействовать на рукоятку в направлении, указанном на рисунке F.1. Рукоятка может в любой точке иметь опору (опоры) при условии, что она не будет оказывать влияния на систему крепления и мешать фиксации системы крепления, при необходимости, рукой во время испытаний. Все измерения проводят в направлении воздействия вибрации.
Если конструкция системы крепления предполагает ее фиксацию на месте кистью руки, то она должна быть испытана в таких же условиях при больших и меньших усилиях нажатия. Если в технической документации указаны дополнительные устройства фиксации, их следует применять в процессе испытаний.
Примечание - Желательно усилие нажатия измерять и контролировать в ходе испытаний. Изменение усилия нажатия в ходе испытаний может оказать влияние на передаточную характеристику системы крепления.
Рукоятку возбуждают однонаправленной вибрацией в форме белого шума как показано на рисунке F.1. Диапазон частот вибрации - не менее чем от 31,5 до 1250 Гц; среднеквадратичное значение корректированного по характеристике ускорения - . Допуск на форму спектра сигнала, измеренного в контрольной точке испытуемой рукоятки, - .