(Действующий) Свод правил СП 27.13330.2011 "СНиП 2.03.04-84. Бетонные и...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
где - коэффициент, принимаемый по таблице 5.13 в зависимости от температуры арматуры S и ;
- коэффициент надежности по температуре, принимаемый при расчете по предельным состояниям: первой группы - 1,1; второй группы - 1.
При расчете бетонного сечения в формулах удлинение арматуры и не учитывают;
б) при неравномерном нагреве бетона с прямолинейным распределением температуры по высоте сечения элемента (рисунок 6.3, а) удлинение оси элемента и ее кривизну допускается определять по формулам:
; (6.37)
, (6.38)
где , - температура бетона менее и более нагретой грани сечения;
и - коэффициенты, принимаемые в зависимости от температуры бетона менее и более нагретой грани сечения по таблице 5.7;
в) при остывании неравномерно нагретого бетона с прямолинейным распределением температуры по высоте сечения элемента от усадки бетона укорочение оси элемента и ее кривизну допускается определять по формулам:
, (6.39)
, (6.40)
где и - коэффициенты, принимаемые по таблице 5.8 в зависимости от температуры бетона менее и более нагретой грани сечения.
6.23 Благодаря сцеплению бетона с арматурой на участках между трещинами деформации арматуры уменьшаются. Температурные деформации арматуры по длине между трещинами непостоянны. Среднее температурное удлинение арматуры в бетоне составит
. (6.41)
Приняв изменения температурных деформаций арматуры в бетоне от нагрева по тому же закону, что и при растягивающем усилии, находим значение среднего коэффициента температурного расширения арматуры в бетоне для первого нагрева по формуле
. (6.42)
Коэффициент, учитывающий работу растянутого бетона между трещинами , для практических расчетов допускают принимать в зависимости от процента армирования продольной растянутой арматуры элемента или определять по формуле (8.22):
при ;
при ;
при ;
при .
1879 × 2726 пикс.     Открыть в новом окне
6.24 Для участков железобетонного элемента, где в растянутой зоне образуются трещины, нормальные к продольной оси элемента, деформации от нагрева рассчитывают следующим образом:
а) для железобетонного элемента с трещинами в растянутой зоне, расположенной у менее нагретой грани сечения (рисунок 6.3, б), удлинение оси элемента и ее кривизну определяют по формулам:
; (6.43)
; (6.44)
б) для участков железобетонного элемента с трещинами в растянутой зоне бетона, расположенной у более нагретой грани сечения (рисунок 6.3, в), удлинение оси элемента определяют по формуле (6.43) и ее кривизну определяют по формуле
; (6.45)
в) для участков железобетонного элемента с трещинами по всей высоте сечения (рисунок 6.3, г) удлинение оси элемента и ее кривизну определяют по формулам:
; (6.46)
, (6.47)
где и - температуры арматуры соответственно S и ;
- температура бетона сжатой грани сечения;
, - коэффициенты, определяемые по формуле (6.42) для арматуры S и ;
- коэффициент, принимаемый по таблице 5.7 в зависимости от температуры бетона более или менее нагретой грани сечения;
- принимается по указаниям 6.22;
- толщина защитного слоя более нагретой грани;
г) при равномерном нагреве железобетонного элемента кривизну оси элемента допускается принимать равной нулю. В железобетонных элементах из обычного бетона при температуре арматуры до 100°С и из жаростойкого бетона при температуре арматуры до 70°С, для участков с трещинами в растянутой зоне бетона удлинение оси элемента и ее кривизну допускается определять по формулам (6.37) и (6.38), как для бетонных элементов без трещин.
6.25 Для участков железобетонных элементов, где в растянутой зоне образуются трещины, нормальные к продольной оси элемента от усадки бетона, при остывании укорочение оси элемента и ее кривизну допускается находить по формулам (6.39) и (6.40).
6.26 Предельно допустимые деформации от воздействия температуры в элементах конструкций, в которых требуется их ограничение при нагревании и охлаждении, должны устанавливаться нормативными документами по проектированию соответствующих конструкций, а при их отсутствии должны указываться в задании на проектирование.
6.27 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов должны устанавливать расчетом. Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в таблице 6.3, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40°С, относительной влажности воздуха 60% и выше и высоте колонн 3 м.
Таблица 6.3
Тип конструкций
Наибольшие расстояния между температурно-усадочными швами, м, допускаемые без расчета для конструкций, находящихся
внутри отапливаемых зданий или в грунте
внутри неотапливаемых зданий
на наружном воздухе
Бетонные:
а) сборные
40
35
30
б) монолитные при конструктивном армировании
30
25
20
в) монолитные без конструктивного армирования
20
15
10
Железобетонные:
а) сборные и сборно-каркасные одноэтажные
72
60
48
б) сборные и сборно-каркасные многоэтажные
60
50
40
в) сборно-блочные, сборно-панельные
55
45
35
г) сборно-монолитные и монолитные каркасные
50
40
30
д) сборно-монолитные и монолитные сплошные
40
30
25
Примечания1 Для железобетонных конструкций (позиция 2), расчетная температура внутри которых не превышает 50°С, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1°С увеличивают соответственно на 10, 20, 40 и 60% и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10% уменьшают соответственно на 20, 40 и 60%.2 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами увеличивают при высоте колонн 5 м - на 20%, 7 м - на 60% и 9 м - на 100%. Высоту колонн определяют: для одноэтажных зданий - от верха фундамента до низа подкрановых балок, а при их отсутствии - до низа ферм или балок покрытия; для многоэтажных зданий - от верха фундамента до низа балок первого этажа.3 Для жетезобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри 70, 120, 300, 500 и 1000°C уменьшают соответственно на 20, 40, 60, 70 и 90%.

Расчет усилий от воздействия температуры

6.28 Расчет статически неопределимых железобетонных конструкций на воздействие температуры производят одним из методов строительной механики, путем последовательных приближений, с принятием действительной жесткости сечений. Если определение усилий в плоской статически неопределимой системе производят методом сил, то в общем случае перемещения по направлению лишних неизвестных в системе канонических уравнений вычисляют по формуле
509 × 102 пикс.     Открыть в новом окне
, (6.48)
где , - приведенные площадь и жесткость элемента в сечениях, определяемые по формулам (6.18) и (8.33).
В выражении (6.48) для немассивных стержневых конструкций третьим интегралом, учитывающим деформации сдвига, можно пренебречь. При расчете железобетонных изгибаемых, сжатых или растянутых элементов, когда , с достаточной для расчета точностью можно не учитывать и второй интеграл, выражающий продольные деформации элементов.
6.29 Если исключить возможность хрупкого разрушения, то, согласно теории прочности, за предельное состояние конструкции принимают такое состояние, когда при постоянном усилии значительно увеличиваются деформации. Такое состояние конструкции характеризуется образованием пластических шарниров с превращением статической системы в механизм. При воздействии только температурных усилий предельным состоянием конструкции является образование пластических шарниров с переходом системы в статически определимую. С образованием пластических шарниров снижаются температурные усилия, но разрушения конструкции не происходит.
6.30 Для конструкций, за предельное состояние которых принимают образование первого или такого количества пластических шарниров, когда система превращается в статически определимую конструкцию, расчет по несущей способности ведут на совместное действие усилий от температуры и нагрузки. Для конструкций, за предельное состояние которых принимают образование последнего пластического шарнира, когда система превращается в механизм, расчет по несущей способности ведут методом предельного равновесия на действие усилий от нагрузки без учета температурных усилий.