(Действующий) Государственный стандарт РФ ГОСТ Р ИСО 5725-5-2002"Точность...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
4.2.2. Данные эксперимента с разделенными уровнями обозначают , где i - номер лаборатории (i = 1, 2, ..., p); j - уровень (j = 1, 2, ..., q); k - проба (k = a или b).
4.3. Организация эксперимента
4.3.1. Руководство по планированию эксперимента с разделенными уровнями приведено в разделе 6 ГОСТ Р ИСО 5725-1. Подраздел 6.3 ГОСТ Р ИСО 5725-1 содержит формулы (использующие величину, обозначенную буквой A), необходимые для принятия решений о числе лабораторий, привлекаемых к участию в эксперименте. Соответствующие формулы для эксперимента с разделенными уровнями приведены ниже.
Примечание. Формулы получены методом, описанным в примечании 24 ГОСТ Р ИСО 5725-1.
Для аналитического выражения неопределенности оценок стандартных отклонений повторяемости и воспроизводимости используют следующие равенства.
Для повторяемости
. (1)
Для воспроизводимости
320 × 43 пикс.     Открыть в новом окне
, (2)
где .
При n=2 формулы (1) и (2) совпадают с формулами (9) и (10) ГОСТ Р ИСО 5725-1, за исключением того, что в них вместо p из ГОСТ Р ИСО 5725-1 появляется p - 1. Это небольшая разница, так что для представления неопределенности оценок стандартных отклонений повторяемости и воспроизводимости в эксперименте с разделенными уровнями могут быть использованы таблица 1 и рисунки B.1 и B.2 ГОСТ Р ИСО 5725-1.
Неопределенность оценки систематической погрешности метода измерений в эксперименте с разделенными уровнями рассчитывают в соответствии с формулой (13) из ГОСТ Р ИСО 5725-1 для n=2 или определяют непосредственно из таблицы 2 ГОСТ Р ИСО 5725-1.
Неопределенность оценки лабораторной систематической погрешности в эксперименте с разделенными уровнями рассчитывают по уравнению (16) ГОСТ Р ИСО 5725-1 для n=2. Поскольку число параллельных определений в эксперименте с разделенными уровнями равно двум, это не позволяет уменьшить неопределенность оценки лабораторной систематической погрешности увеличением числа параллельных определений. (Если необходимо снизить эту неопределенность, то необходимо использовать эксперимент с однородными уровнями).
4.3.2. Следуя руководству, приведенному в разделах 5 и 6 ГОСТ Р ИСО 5725-2, следует отнестись с вниманием к деталям организации эксперимента с разделенными уровнями. Число параллельных определений n в ГОСТ Р ИСО 5725-2 должно быть равным числу параллельных определений в эксперименте с разделенными уровнями, то есть двум.
Пробы a и b должны быть распределены среди участников случайным образом, причем процедуры рандомизации для a и b должны быть независимы. При этом необходимо, чтобы эксперты-статистики имели точную информацию о том, какие результаты были получены на материале a и какие - на материале b на каждом уровне эксперимента. Однако пробы следует зашифровать так, чтобы скрыть эту информацию от участников эксперимента.

Таблица 1 - Рекомендуемая форма для сравнения данных эксперимента с разделенными уровнями

Номер лаборатории
Уровень
1
2
j
q
a
b
a
b
a
b
a
b
1
2
i
p
4.4. Статистическая модель
4.4.1. Основная модель, используемая в настоящем стандарте, дана равенством (1) в разделе 5 ГОСТ Р ИСО 5725-1. Там установлено, что для оценивания точности (правильности и прецизионности) метода измерений каждый результат измерения полезно представлять как сумму трех составляющих:
, (3)
где для определенного испытуемого материала:
- общее среднее значение для определенного уровня j=1, ..., q;
- лабораторная составляющая систематической погрешности в условиях повторяемости в определенной лаборатории i=1, ..., p на определенном уровне j=1, ..., q;
- случайная погрешность результата измерений k=1, ..., n, полученная в лаборатории i на уровне j в условиях повторяемости.
4.4.2. Для эксперимента с разделенными уровнями эта модель принимает вид
. (4)
Это неравенство отличается от равенства (3) только одной деталью: индекс k в означает, что в соответствии с равенством (4) общее среднее значение может теперь зависеть от материала a или b (k=1 или 2) на уровне j.
Отсутствие индекса k в означает допущение, что систематическая ошибка, связанная с лабораторией i, не зависит от материала a или b на определенном уровне. Вот почему так важно, чтобы эти два материала были бы однородными (одинаковыми).
4.4.3. Определяют среднее значение в базовом элементе (ячейке)
(5)
и внутриэлементное расхождение (разброс)
. (6)
4.4.4. Общее среднее значение для уровня j в эксперименте с разделенными уровнями может быть определено как
. (7)
4.5. Статистический анализ данных эксперимента с разделенными уровнями
4.5.1. Данные эксперимента сводят в таблицу (см. таблицу 1). Каждая комбинация лаборатории и уровня дает базовый элемент (ячейку) в этой таблице, а также содержит два результата и .
Рассчитывают - расхождения в элементах и сводят их в таблицу (см. таблицу 2). Метод анализа требует, чтобы все расхождения были рассчитаны с сохранением знака разности
a - b.
Рассчитывают средние значения и сводят их в таблицу (см. таблицу 3).
4.5.2. Если элемент в таблице 1 не содержит двух результатов измерений (например потому, что пробы были испорчены или данные исключены в последующем как выбросы), то соответствующие элементы в таблицах 2 и 3 оставляют пустыми.
4.5.3. Для каждого уровня j эксперимента рассчитывают среднее и стандартное отклонения расхождений в графе j таблицы 2 по формулам:
, (8)
210 × 46 пикс.     Открыть в новом окне
, (9)
где - знак суммирования по всем лабораториям i=1, 2, ..., p.
Если в таблице 2 имеются пустые элементы, то p теперь становится числом элементов в графе j таблицы 2, содержащих данные, и суммирование выполняют без пустых элементов.
4.5.4. Для каждого уровня j в эксперименте рассчитывают среднее и стандартное отклонения средних значений в графе j таблицы 3, используя формулы:
, (10)
205 × 46 пикс.     Открыть в новом окне
, (11)
где - знак суммирования по всем лабораториям i=1, 2, ..., p.
Если в таблице 3 имеются пустые элементы, то p теперь становится числом элементов в графе j, содержащих данные, и суммирование выполняют без пустых элементов.