(Действующий) ГОСТ Р 58771-2019 Менеджмент риска. Технологии оценки риска...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
- устройства физической защиты;
- системы блокировок и выключения;
- критические аварийные сигналы и ручное вмешательство;
- физическую защиту после событий;
- системы аварийного реагирования.
Стандартные процедуры и/или инспекции не создают прямого препятствия для отказа, поэтому в целом их не следует рассматривать как IPL. Оценивается вероятность отказа каждого IPL, и выполняется расчет порядка величины, чтобы определить, достаточна ли общая защита для снижения риска до приемлемого уровня. Частота возникновения нежелательных последствий может быть найдена путем объединения частоты исходной причины с вероятностями отказа каждого IPL с учетом любых условных модификаторов. (Пример условного модификатора - присутствует ли человек и может ли на него повлиять). Порядки величин используются для частот и вероятностей.
Б.4.4.2 Использование
Целью LOPA является обеспечение эффективности контроля, необходимого для обработки риска, с тем чтобы остаточный уровень риска был на приемлемом уровне.
LOPA может быть использован для качественной проверки уровней защиты между фактором и следствием. Он также может использоваться количественно для распределения ресурсов на обработку риска посредством анализа уровня снижения риска, создаваемого каждым уровнем защиты. Он может быть применен к системам с долгосрочным или краткосрочным временным горизонтом и обычно используется для борьбы с операционными рисками.
LOPA может использоваться количественно для спецификации (IPL) и уровней целостности безопасности (уровни SIL) для измерительных систем, как описано в серии стандартов МЭК 61508 [1] и в МЭК 61511 [2].
Б.4.4.3 Вход
Входы в LOPA включают:
- основная информация об источниках, причинах и последствиях событий;
- информация о контроле на месте или предлагаемых методах управления;
- частота причинных событий и вероятности отказа уровней защиты, оценки последствий и определение уровня допустимого риска.
Б.4.4.4 Выход
Выводы представляют собой рекомендации для дальнейшей обработки и оценки остаточного риска.
Б.4.4.5 Сильные стороны и ограничения
Сильные стороны LOPA:
- требует меньше времени и ресурсов, чем анализ дерева событий или количественный анализ риска, но более точный, чем субъективные качественные суждения;
- помогает выявлять и фокусировать ресурсы на наиболее важных уровнях защиты;
- идентифицирует операции, системы и процессы, для которых отсутствуют достаточные контроли;
- основное внимание уделяется наиболее серьезным последствиям.
Ограничения LOPA:
- фокусировка на одной паре причин - последствий и одном сценарии за раз; сложное взаимодействие между рисками или между контролями не покрывается;
- при использовании количественного метода может не учитывать общие ошибки;
- он не применяется к очень сложным сценариям, где есть много причинно-следственных пар или где есть различные последствия, затрагивающие различные причастные стороны.

Б.5 Технологии понимания последствий, вероятности и риска

Б.5.1 Общие положения
Методы в этом разделе направлены на то, чтобы обеспечить более полное понимание последствий и их вероятности. В целом последствия могут быть изучены путем:
- экспериментов, таких как клеточные исследования для изучения последствий воздействия токсинов с результатами, связанными с рисками для здоровья человека и окружающей среды;
- исследования прошлых событий, включая эпидемиологические исследования;
- моделирования для определения того, как последствия развиваются после некоторого триггера, и как это зависит от контроля на месте. Это может включать математические или инженерные модели и логические методы, такие как анализ дерева событий (см. Б.5.2);
- методов поощрения творческого мышления, такие как сценарный анализ (см. Б.2.5).
Вероятность события или конкретного последствия может быть оценена путем:
- экстраполяции из исторических данных (при наличии достаточных соответствующих исторических данных для того, чтобы анализ был статистически достоверным). Это особенно применимо к нулевым происшествиям, когда нельзя предположить, что, поскольку событие или следствие не произошло в прошлом, то оно не произойдет в ближайшем будущем;
- синтеза из данных, относящихся к показателям отказа или успеха компонентов систем: использование таких методов, как анализ дерева событий (см. Б.5.5), анализ дерева отказов (см. Б.5.6) или анализ последствий (см. Б.5.7);
- методов моделирования, чтобы генерировать, например, вероятность отказа оборудования и структурные отказы из-за старения и других процессов деградации.
Экспертов можно попросить высказать свое мнение о вероятностях и последствиях с учетом соответствующей информации и исторических данных. Существует ряд формальных методов для выявления экспертных оценок, которые делают использование суждения видимым и явным (см. Б.1).
Последствия и их вероятность могут быть объединены, чтобы представить уровень риска. Это можно использовать для оценки значимости риска путем сравнения уровня риска с критерием приемлемости или ранжирования рисков.
Методы сочетания качественных значений следствия и вероятности включают индексные методы (см. Б.8.6) и матрицы последствий и вероятности (см. Б.9.3). Единая мера риска также может быть получена из распределения вероятностей последствий (см., например, VaR [см. Б.5.12] и CVaR [см. Б.5.13] и S-кривые [см. Б.9.4]).
Б.5.2 Байесовский анализ
Б.5.2.1 Обзор
Обычно возникают проблемы, когда есть как данные, так и субъективная информация. Анализ Байеса позволяет использовать оба типа информации при принятии решений. Байесовский анализ основан на теореме, приписываемой преподобному Томасу Байесу (1760). В самой простой теореме Байеса дается вероятностная основа для изменения одного мнения в свете новых доказательств. Она обычно выражается следующим образом:
,
где Pr(A) - является предварительной оценкой вероятности A (априорная вероятность);
Pr(B) - является предварительной оценкой вероятности B (априорная вероятность);
Pr(A|B) - вероятность события A при условии, что произойдет событие B (апостериорная оценка);
Pr(B|A) - вероятность события В при условии, что произойдет событие A.
Теорема Байеса может быть расширена, чтобы охватить несколько событий в конкретном выборочном пространстве.