Действующий
8.4 Для подземных трубопроводов, имеющих отношение или укладываемых на глубину более 3 м или менее 0,8 м, следует соблюдать условие
Значения и (расчетное усилие и изгибающий момент в продольном сечении трубы единичной длины) необходимо определять с учетом отпора грунта от совместного воздействия давления грунта, нагрузок над трубой от подвижного состава железнодорожного и автомобильного транспорта, возможного вакуума и гидростатического давления грунтовых вод.
9 Проверка прочности и устойчивости трубопроводов
9.1 Поверочный расчет трубопровода на прочность и устойчивость производится после выбора его основных размеров с учетом всех расчетных нагрузок и воздействий для всех расчетных случаев.
9.2 Определение усилий от расчетных нагрузок и воздействий, возникающих в отдельных элементах трубопроводов, необходимо производить методами строительной механики расчета статически неопределимых стержневых систем.
9.3 Расчетная схема трубопровода должна отражать действительные условия его работы.
9.4 В качестве расчетной схемы трубопровода следует рассматривать статически неопределимые плоские или пространственные, простые или разветвленные стержневые системы переменной жесткости с учетом взаимодействия трубопровода с опорными устройствами и окружающей средой (при прокладке непосредственно в грунт). При этом коэффициенты повышения гибкости отводов и тройниковых соединений определяются согласно 9.5 и 9.6, коэффициенты интенсификации напряжений - согласно 9.7.
9.5 Значение коэффициента повышения гибкости гнутых и сварных отводов надлежит определять по таблице 9.
Величина принимается по графику на рисунке 1 в зависимости от геометрического параметра отвода и параметра внутреннего давления .
Значения параметров и следует определять по формулам:
9.6 Коэффициент гибкости тройниковых соединений необходимо принимать равным единице.
9.7 Значения коэффициентов интенсификации напряжений следует принимать:
Значение принимается по графику на рисунке 2 в зависимости от параметров и , определяемых формулами (10) и (11);
для тройникового соединения:
магистральной части , (12)
Значения принимаются по графику на рисунке 2 в зависимости от параметров тройникового соединения, определяемых по формулам:
Примечание - При определении значений параметров магистральной части тройникового соединения и используются первые индексы, ответвления тройникового соединения и - вторые индексы.
9.8 Арматуру, расположенную на трубопроводе (краны, задвижки, обратные клапаны и т.д.), следует рассматривать в расчетной схеме как твердое недеформируемое тело.
Проверка прочности и устойчивости подземных и наземных (в насыпи) трубопроводов
9.9 Подземные и наземные (в насыпи) трубопроводы следует проверять на прочность, деформативность и общую устойчивость в продольном направлении и против всплытия.
9.10 Проверку на прочность подземных и наземных (в насыпи) трубопроводов в продольном направлении следует производить из условия
где - коэффициент, учитывающий двухосное напряженное состояние металла труб, при растягивающих осевых продольных напряжениях ( ) принимаемый равным единице, при сжимающих ( ) определяемый по формуле
9.11 Продольные осевые напряжения определяются от расчетных нагрузок и воздействий с учетом упругопластической работы металла. Расчетная схема должна отражать условия работы трубопровода и взаимодействие его с грунтом.
9.12 Для предотвращения недопустимых пластических деформаций подземных и наземных (в насыпи) трубопроводов проверку необходимо производить по условию
где - коэффициент, учитывающий двухосное напряженное состояние металла труб; при растягивающих продольных напряжениях ( ) принимаемый равным единице, при сжимающих ( ) - определяемый по формуле
9.13 Максимальные (фибровые) суммарные продольные напряжения определяются от всех (с учетом их сочетания) нормативных нагрузок и воздействий с учетом поперечных и продольных перемещений трубопровода. При определении жесткости и напряженного состояния отвода следует учитывать условия его сопряжения с трубой и влияние внутреннего давления.
9.14 Проверку общей устойчивости трубопровода в продольном направлении в плоскости наименьшей жесткости системы следует производить из условия