(Действующий) Ведомственные строительные нормы ВСН 185-85 "Расчет на прочность...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
При выборе расчетных нагрузок и воздействий следует руководствоваться указаниями СНиП 2.05.06-85 "Магистральные трубопроводы. Нормы проектирования", СНиП 11-6-74 "Нагрузки и воздействия" и приложений 7 и 8.
Определение и в основных сечениях системы следует производить методами строительной механики статически неопределимых нелинейных систем (см. приложение 2).
3.3. Изгибную жесткость гнутых и сварных отводов следует находить по формуле
, (1)
где коэффициенты и следует определять по приложению 3. При этом допускается использование методики (см. [9] приложения 2) при соответствующем обосновании.
В качестве расчетной модели тройникового соединения следует рассматривать модель, состоящую из четырех элементов.
В просвете тройника размещена абсолютно жесткая -образная вставка, в которой длина стойки равна внешнему радиусу магистральной части, а длины двух плеч равны внешнему радиусу отвода соединения. Примыкающие к вставке три упругих элемента имеют изгибную жесткость, равную жесткости трубы соответствующей толщины. Для сварных тройников с усиливающими накладками изгибная жесткость упругих элементов определяется как жесткость сечения этого элемента в зоне примыкания к абсолютно жесткой вставке.
В расчетной схеме взаимодействие каждого элемента подземной части обвязочного трубопровода с грунтом следует моделировать установкой равномерно распределенной "нелинейной пространственной пружины", жесткость которой характеризуется тремя коэффициентами , , для трех взаимно перпендикулярных направлений. Первое направление совпадает с направлением продольной оси элемента, второе - является горизонтальным и перпендикулярно первому, третье - перпендикулярно плоскости, образованной первым и вторым направлениями.
Коэффициент жесткости пружины для первого направления определяется трением между поверхностью изоляции и грунтом. Величина зависит от глубины заложения элемента и от физико-механических свойств грунта (его вида, консистенции, крупности и пористости, способности сопротивляться предельным сдвиговым деформациям).
Коэффициент жесткости пружины для второго направления отражает отпор грунта при боковом вдавливании цилиндрической поверхности. Коэффициент зависит от величины бокового перемещения элемента и определяется способностью грунта сопротивляться нормальному вдавливанию штампа с цилиндрической поверхностью и учитывает физико-механические свойства засыпки траншеи и основного грунта.
Коэффициент жесткости пружины для третьего направления учитывает отпор грунта при вертикальном вдавливании цилиндрической поверхности (движение вниз) и сопротивление вышележащего над элементом слоя засыпки вертикальному перемещению цилиндрической поверхности (движение вверх).
Значения коэффициентов жесткости следует определять либо экспериментально, либо теоретически при решении задачи о распределении напряжений в грунтовом полупространстве, механические свойства которого учитывают физико-механические свойства засыпки и грунта и его предельную способность сопротивления сдвиговому и нормальному деформированию.
3.4. Номинальные значения компонент напряжений, соответствующие усилию , моменту i = х, у, z (рис. 1) и внутреннему давлению, вычисленных согласно пп. 3.1 и 3.2, находятся по следующим зависимостям:
; (2)
, , , (i = 1, 2); (3)
, , , (i = 1, 2); (4)
, , (i = 1, 2); (5)
, , (i = 1, 2); (6)
, (i = 1, 2) ; (7)
, ;
(0 < K < 2). (8)
Примечание. Для отводов в формулах (2) - (8) следует использовать вместо величину .
3.5. На втором этапе расчета находят истинное напряженное состояние элементов трубопроводов в результате решения соответствующей задачи теории упругости или пластичности (см. [16, 17] приложения 2), либо определяют номинальное напряженное состояние, компоненты которого умножаются на соответствующие значения коэффициентов и , характеризующие наиболее напряженные области элементов.
Истинное распределение напряжений в отдельных элементах трубопровода дает решение соответствующей задачи теории упругости или пластичности с граничными условиями, учитывающими ранее найденные значения и . Решение может быть найдено аналитически, численно с помощью метода конечных элементов, реализованного на ЭВМ (программа ЛИРА [3, 5], программа ПЛАНК' [7] (см. приложение 2), или экспериментально.
При использовании соответствующих алгоритмов для определения напряженно-деформированного состояния элементов трубопроводов, реализованных на ЗиЛ, следует проводить оценку точности полученных значений напряжений.
Компоненты номинальных напряжений находятся по соотношениям п. 3.4. Эффективный коэффициент концентрации напряжений элементов обвязочных трубопроводов следует определять решением задачи теории малых упруго-пластических деформаций [16, 17] для этих элементов под действием расчетной системы нагрузок, усилий и моментов (аналитически или численно), экспериментально с натурными деталями или их моделями, подвергнутыми нагружению системой вышеуказанных нагрузок, усилий и моментов вплоть до разрушения. При отсутствии данных по допускается выбирать их значения по соотношениям приложения 5.
Теоретический коэффициент концентрации напряжений для элементов обвязочных трубопроводов определяется: решением задачи о напряженном состоянии элемента под действием расчетной системы нагрузок, усилий и моментов методами теории упругости (аналитически или численно), экспериментальными методами исследования напряженно-деформированного состояния элементов в упругой области.
При отсутствии данных по их значения допускается выбирать по соотношениям и графикам приложений 4 и 5.

4. Оценка статической прочности элементов обвязочных трубопроводов КС

Условие, при котором недопустимые пластические деформации отсутствуют в элементах подземных и надземных частей обвязочных трубопроводов, выполняется, если
, (9)
где коэффициент находится по табл. 10 СНиП 2.05.06-85, коэффициент - по табл. 11 СНиП 2.05.06-85.
Для обеспечения статической прочности элементов трубопроводов требование
(10)
должно быть удовлетворено, где коэффициент задается в табл. 1, коэффициент - в табл. 11 СНиП 2.05.06-85.
Статическая прочность тройниковых соединений проверяется по соотношениям (43) приложения 4.
Эквивалентное напряжение (j = 1, 2) находится по зависимостям:
при оценке работоспособности основного металла, и сварных стыковых соединений
; (11)
при оценке работоспособности отводов (коленьев) и тройниковых соединений
. (12)
Компоненты напряженного состояния ( , k = 1, 2, 3) определяются следующими зависимостями:
для основного металла труб
; или ;
или (i = 1, 2); (13)
для поперечного сварного стыкового соединения
; ; ; (i = 1, 2); (14)
для продольного сварного стыкового соединения
; ; ; (i = 1, 2), (15)