Действующий
Ведомственные строительные нормы ВСН 185-85 "Расчет на прочность обвязочных трубопроводов" (утв. Миннефтегазстроем 13 ноября 1985 г., Мингазпромом 5 ноября 1985 г.)
Настоящие нормы не распространяются на обвязочные трубопроводы КС, вооружаемые в сейсмических районах, в зонах распространения многолетней мерзлоты или просадочных грунтов, на подрабатываемых территориях.
в сечениях трубопровода находят компоненты усилий и моментов как в пространственной стержневой системе под действием расчетных нагрузок и воздействий;
по теории предельных процессов простого нагружения оценивают статическую прочность, долговечность и динамическую прочность элементов, находящихся под действием системы усилий и моментов. Если при этом оказывается, что в некоторых элементах напряженное состояние не удовлетворяет требованиям прочности настоящих норм, следует изменить конструктивную схему таким образом, чтобы напряжения в данном элементе уменьшились до требуемого уровня.
Если будет установлено, что усилия и моменты, действующие на нагнетатели, превосходят значения, нормируемые заводом-изготовителем ГПА, конструктивную схему также следует изменить таким образом, чтобы уменьшить эти усилия и моменты до требуемого уровня.
Значения расчетной толщины стенки труб следует определять по формуле (12) СНиП 2.05.06-85 при следующих значениях коэффициентов: m = 0,6; n = 1,1.
Значения коэффициента для отечественных и импортных труб выбирают в соответствии с указаниями "Инструкции по применению стальных труб в газовой и нефтяной промышленности", М., ВНИИСТ, 1983.
Геометрические размеры соединительных деталей следует определять по формулам (59) и (60) СНиП 2.05.06-85. При этом следует руководствоваться указаниями ГОСТ 17374-83 - ГОСТ 17380-83 и рекомендациями ОСТ 102-54-81 - ОСТ 102-57-81, ОСТ 102-58-81 - ОСТ 102-59-81, ОСТ 102-60-81 - ОСТ 102-62-81 "Детали магистральных трубопроводов стальные приварные на до 10,0 МПа (100 )", ОСТ 102-39-85 - ОСТ 102-45-85 "Детали трубопроводов бесшовные приварные на до 100 (до 9,81 МПа) из низколегированных сталей".
Провести затем оценку опасности этого напряженного состояния в течение срока службы газопровода, т.е. оценку прочности элементов при статическом и повторно-статическом эксплуатационном нагружении.
* при их основных сочетаниях с учетом остановок КС в наиболее неблагоприятных температурных условиях. На втором этапе находят напряженное состояние отдельных элементов по ранее найденным значениям О и М.
3.2. Напряженное состояние основных элементов обвязочного трубопровода определяют в два этапа. Главная цель первого этапа состоит в определении значений компонент усилия и момента в основных элементах трубопровода от воздействия расчетных нагрузок
На первом этапе допускается рассматривать обвязочный трубопровод как статически неопределимую пространственную стержневую систему переменной жесткости, учитывающую ответвления, подземную и надземную части, промежуточные опоры и нагнетатели, находящиеся на фундаментах. Эпюры и должны отражать действие на эту систему внутреннего давления, неравномерного температурного поля, распределенной и сосредоточенной весовых и 1 ветровых нагрузок, отпора грунта и сил трения на опорах.
При выборе расчетных нагрузок и воздействий следует руководствоваться указаниями СНиП 2.05.06-85 "Магистральные трубопроводы. Нормы проектирования", СНиП 11-6-74 "Нагрузки и воздействия" и приложений 7 и 8.
Определение и в основных сечениях системы следует производить методами строительной механики статически неопределимых нелинейных систем (см. приложение 2).
где коэффициенты и следует определять по приложению 3. При этом допускается использование методики (см. [9] приложения 2) при соответствующем обосновании.
В качестве расчетной модели тройникового соединения следует рассматривать модель, состоящую из четырех элементов.
В просвете тройника размещена абсолютно жесткая -образная вставка, в которой длина стойки равна внешнему радиусу магистральной части, а длины двух плеч равны внешнему радиусу отвода соединения. Примыкающие к вставке три упругих элемента имеют изгибную жесткость, равную жесткости трубы соответствующей толщины. Для сварных тройников с усиливающими накладками изгибная жесткость упругих элементов определяется как жесткость сечения этого элемента в зоне примыкания к абсолютно жесткой вставке.
В расчетной схеме взаимодействие каждого элемента подземной части обвязочного трубопровода с грунтом следует моделировать установкой равномерно распределенной "нелинейной пространственной пружины", жесткость которой характеризуется тремя коэффициентами , , для трех взаимно перпендикулярных направлений. Первое направление совпадает с направлением продольной оси элемента, второе - является горизонтальным и перпендикулярно первому, третье - перпендикулярно плоскости, образованной первым и вторым направлениями.
Коэффициент жесткости пружины для первого направления определяется трением между поверхностью изоляции и грунтом. Величина зависит от глубины заложения элемента и от физико-механических свойств грунта (его вида, консистенции, крупности и пористости, способности сопротивляться предельным сдвиговым деформациям).
Коэффициент жесткости пружины для второго направления отражает отпор грунта при боковом вдавливании цилиндрической поверхности. Коэффициент зависит от величины бокового перемещения элемента и определяется способностью грунта сопротивляться нормальному вдавливанию штампа с цилиндрической поверхностью и учитывает физико-механические свойства засыпки траншеи и основного грунта.
Коэффициент жесткости пружины для третьего направления учитывает отпор грунта при вертикальном вдавливании цилиндрической поверхности (движение вниз) и сопротивление вышележащего над элементом слоя засыпки вертикальному перемещению цилиндрической поверхности (движение вверх).
Значения коэффициентов жесткости следует определять либо экспериментально, либо теоретически при решении задачи о распределении напряжений в грунтовом полупространстве, механические свойства которого учитывают физико-механические свойства засыпки и грунта и его предельную способность сопротивления сдвиговому и нормальному деформированию.