(Действующий) Национальный стандарт РФ ГОСТ Р 58568-2019 "Оптика и фотоника....

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий

1 Область применения

Настоящий стандарт устанавливает основополагающие термины и определения в отношении фотоники как отрасли экономики, включая научные исследования, разработку, производство, технологии и использование продукции. Цель настоящего стандарта - предоставление согласованной общей терминологии, которая уменьшит двусмысленность и непонимание и тем самым будет способствовать развитию сферы фотоники.

2 Термины и определения

2.1 Фотоника
2.1.1 фотоника: Область науки и техники, занимающаяся фундаментальными и прикладными исследованиями оптического излучения, а также созданием на их базе устройств различного назначения.
2.2 Излучения оптические
2.2.1
оптическое излучение: Электромагнитное излучение с длинами волн, лежащими в пределах между областью перехода к рентгеновским лучам ( 1 нм) и областью перехода к радиоволнам ( 1 мм).[ГОСТ Р 55704-2013, статья 2.1]
2.2.2
видимое излучение (свет): Оптическое излучение, которое может непосредственно вызвать зрительное ощущение.Примечание - Не существует точных пределов спектрального диапазона видимого излучения, так как они зависят от мощности достигающего ретины излучения и чувствительности глаза наблюдателя. За нижний предел принимают диапазон от 360 до 400 нм, а за верхний предел - 760 и 830 нм[ГОСТ Р 55704-2013, статья 2.2]
2.2.3
инфракрасное излучение: Оптическое излучение, у которого длины волн больше длин волн видимого излучения.Примечание - Для инфракрасного излучения диапазон между 780 нм и 1 мм подразделяют на поддиапазоны: ИК-А (780-1400 нм), ИК-В (1,4-3 мкм), ИК-С (от 3 мкм до 1 мм).[ГОСТ Р 55704-2013, статья 2.3]
2.2.4
ультрафиолетовое излучение: Оптическое излучение, у которого длины волн меньше длин волн видимого излучения.Примечание - Для ультрафиолетового излучения диапазон между 100 и 400 нм подразделяют на поддиапазоны: УФ-А (315-400 нм), УФ-В (280-315 нм), УФ-С (100-280 нм).[ГОСТ Р 55704-2013, статья 2.4]
Примечание - Для 2.2.1-2.2.4 допустимы иные границы диапазонов в зависимости от прикладных задач и практического использования приборов.
2.3 Разделы фотоники и смежные разделы науки и техники
2.3.1 квантовая электроника: Раздел фотоники, связанный с изучением и практическим применением методов усиления и генерации электромагнитного излучения, основанных на использовании явления вынужденного излучения в неравновесных квантовых системах.
2.3.2 Нанофотоника
2.3.2.1 нанофотоника: Раздел фотоники, связанный с изучением и практическим применением физических явлений, возникающих при взаимодействии фотонов с объектами нанометровых размеров, в т.ч. с созданием устройств, в которых для генерации или поглощения света используют наноструктуры.
2.3.2.2
нанотехнология: Применение научных знаний для изучения, проектирования, производства и управления строением материальных объектов преимущественно в нанодиапазоне с использованием зависящих от размера и структуры свойств этих объектов или присущих им явлений, которые могут отсутствовать у отдельных атомов и молекул или аналогичных макрообъектов.Примечание - Производство и управление строением включают в себя синтез материалов.[ГОСТ ISO/TS 80004-1-2017, статья 2.3]
2.3.2.3
наноэлектроника: Раздел электроники, изучающий методы проектирования и изготовления функциональных электронных устройств, компоненты которых имеют размеры в нанодиапазоне.Примечание - Производство и управление строением включают в себя синтез материалов.[ГОСТ Р 57257-2016/ISO/TS 80004-12:2016, статья 6.2]
2.3.2.3.1 квантовая проволока: Объект нитеобразной формы с поперечными размерами, удовлетворяющими условию размерного квантования. Потенциальная энергия электрона в таком объекте ниже, чем за его пределами, и за счет малых поперечных размеров (как правило, 1-10 нм) движение электрона ограничено в двух измерениях.
Примечание - Движение вдоль оси нити остается свободным, в то время как движение в других направлениях квантуется, и его энергия может принимать лишь дискретные значения.
2.3.2.3.2
квантовая точка: Нанообъект, линейные размеры которого по трем измерениям близки длине волны электрона в материале данного нанообъекта и внутри которого потенциальная энергия электрона ниже, чем за его пределами, при этом движение электрона ограничено во всех трех измерениях.[ГОСТ ISO/TS 80004-6-2016, статья 2.8]
2.3.2.3.3 квантовая яма: Тонкий плоский слой полупроводникового материала (как правило, толщиной 1-10 нм), внутри которого потенциальная энергия электрона ниже, чем за его пределами, таким образом, движение электрона ограничено в одном измерении.
Примечание - Движение в направлении, перпендикулярном к плоскости квантовой ямы, квантуется, и его энергия может принимать лишь некоторые дискретные значения, называемые уровнями размерного квантования.
2.3.2.3.4 квантовые кристаллы: Кристаллы, характеризующиеся большой амплитудой нулевых колебаний атомов (колебаний вблизи Т = 0 K), сравнимой с кратчайшим межатомным расстоянием, вследствие чего они обладают необычными физическими свойствами, объяснимыми только в рамках квантовой теории.
Примечание - Из известных на Земле веществ только изотопы гелия 3Не и 4Не при давлениях свыше Па образуют квантовые кристаллы. Квантовые эффекты наблюдаются также у кристаллов Ne и в меньшей степени у кристаллов др. инертных газов. В недрах нейтронных звезд, возможно, существуют квантовые кристаллы, состоящие из нейтронов.
2.3.2.4 лазерный пинцет: Устройство для удержания нано- и микрочастиц вблизи фокуса специально сформированного лазерного луча, использующееся для целенаправленного перемещения таких частиц.
2.3.2.5 поляритон: Составная квазичастица, возникающая при взаимодействии фотонов и элементарных возбуждений среды.
2.3.2.6 плазмон: Квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания плотности заряда свободного электронного газа.
2.3.2.6.1 плазменный резонанс: Возбуждение поверхностного плазмона на его резонансной частоте внешней электромагнитной волной (в случае наноразмерных металлических структур называется локализованным плазмонным резонансом).
2.3.2.7 нанолазер: Устройство, генерирующее или усиливающее поверхностные плазмоны.
2.3.3 Биофотоника
2.3.3.1 биофотоника: Раздел фотоники, связанный с изучением и практическим использованием взаимодействия фотонов с биологическими объектами; сюда же обычно относят биомедицинские использования лазерного излучения.
2.3.3.2 оптогенетика: Новая область нейробиологии, объединяющая оптические и генетические методы исследования нейронных связей (реакций, цепей) у интактных млекопитающих и других животных на высоких скоростях (единицей измерения являются миллисекунды), что необходимо для понимания процессов обработки информации мозгом.
2.3.3.3 лазерная биостимуляция: Активизация естественных физиологических процессов в биологических тканях под воздействием лазерного излучения.
2.3.3.4 фотосенсибилизатор: Природное или искусственно синтезированное вещество, способное поглощать свет и индуцировать химические реакции, которые в его отсутствие не происходят.
2.3.3.5 фотодинамическая терапия; ФДТ: Метод терапии злокачественных опухолей, основанный на введении в организм фотосенсибилизаторов, локализующихся преимущественно в опухоли, и воздействии света с определенной длиной волны.
Примечание - Под действием света продуцируются цитотоксические агенты, прежде всего, синглетный кислород.
2.3.4 Оптическая сенсорика
2.3.4.1 оптическая сенсорика: Раздел фотоники, связанный с разработкой принципов, методов и устройств диагностики с использованием оптического излучения.
2.3.4.2 волоконно-оптическая сенсорика: Раздел оптической сенсорики, целью которого является разработка новых принципов и методов диагностики с использованием волоконно-оптических компонентов.
2.3.5 Оптоэлектроника (фотоэлектроника)
2.3.5.1 оптоэлектроника (фотоэлектроника): Область науки и техники, изучающая эффекты взаимодействия между электромагнитными волнами оптического диапазона и электронами вещества и охватывающая проблемы создания оптоэлектронных приборов, в которых эти эффекты используются для получения, обработки, передачи, хранения и отображения информации.
2.3.6 кремниевая фотоника: Раздел фотоники, в рамках которой исследуются возможности создания фотонных интегральных схем на одном кристалле кремния.
2.3.7 Оптическая информатика (оптоинформатика)