Действующий
Межгосударственный стандарт ГОСТ 8865-93 "Системы электрической изоляции. Оценка нагревостойкости и классификация" (введен в действие постановлением Комитета РФ по стандартизации, метрологии и сертификации от 2 июня 1994 г. N 160)
Настоящий стандарт распространяется на электротехнические изделия и устанавливает систему классификации электроизоляции электротехнических изделий по нагревостойкости и ответственность за ее выбор, а также правила оценки нагревостойкости электроизоляционных материалов и систем изоляции, их взаимосвязь и влияние условий эксплуатации.
Стойкость изоляции электротехнических изделий зависит от многих факторов, таких как температура, электрические и механические воздействия, вибрация, агрессивность среды, химические воздействия, влажность, загрязнение и радиационное излучение. Поскольку для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, для оценки стойкости электрической изоляции электротехнических изделий к воздействию температуры приняты классы нагревостойкости.
Использование буквенных обозначений необязательно. Но следует придерживаться вышеприведенного соответствия между буквенными обозначениями и температурами. Если 2.1.5 применяется по отношению к оборудованию специального вида, можно использовать альтернативную систему классификации.
Класс нагревостойкости электротехнического изделия отражает максимальную рабочую температуру, свойственную данному изделию при номинальной нагрузке и других условиях.
Изоляция под действием данной максимальной температуры должна иметь нагревостойкость не менее температуры, соответствующей классу нагревостойкости электротехнического изделия (см. 2.1.2). Термин "класс" использовался при ссылке на электроизоляционные материалы, системы изоляции и изделия. В ГОСТ 27710 был введен термин "температурный индекс", распространяющийся на электроизоляционные материалы, а в ГОСТ 27905.1 - термин "идентификация" для систем изоляции. Идентификация системы распространяется только на случай ее использования в конкретном изделии, для которого она предназначена. Термин "классификация" можно использовать для электротехнических изделий.
При нормальных условиях эксплуатации можно получить удовлетворительный экономичный срок службы для таких электротехнических изделий, как вращающиеся машины, трансформаторы и т.д., спроектированных и изготовленных в соответствии со стандартами, основанными на температурах, представленных в 2.1, делая необходимые допуски для учета факторов, характерных для данного изделия.
Присвоение электротехническому изделию конкретного класса нагревостойкости не означает, что каждый электроизоляционный материал, используемый в конструкции изделия, имеет такую же нагревостойкость. Нагревостойкость отдельных материалов, входящих в систему изоляции, может не соответствовать нагревостойкости самой системы. В системе характеристики нагревостойкости электроизоляционного материала могут быть улучшены за счет предохраняющего эффекта других материалов, входящих в данную систему изоляции. С другой стороны, несовместимость между материалами может понизить соответствующий температурный предел всей системы по сравнению со значениями для отдельных материалов. Совместимость материалов в системе изоляции и максимальная рабочая температура для всей системы должны быть установлены в ходе функциональных испытаний или в результате опыта эксплуатации.
Температура, приведенная в настоящем стандарте, является фактической температурой изоляции, но не превышением температуры электротехнического изделия. В стандартах на электротехнические изделия обычно нормируют превышение температуры, а не фактическую температуру. При разработке таких стандартов, устанавливая методы измерения и допустимое превышение температуры, следует учитывать такие факторы, как конструкция, температурная проводимость и толщина изоляции, доступность изолированных частей, метод вентиляции, характеристики нагрузки и т.д.
Кроме температуры, на способность изоляции выполнять свои функции влияют такие факторы, как механические нагрузки, действующие на изоляцию и ее опорные конструкции, а также вибрация и тепловое расширение, роль которого может возрастать с увеличением габаритных размеров изделия. Вредное влияние могут оказывать атмосферная влага, загрязнение, химические воздействия. Все эти факторы следует принимать во внимание при разработке конкретных изделий. Дополнительная информация об этом содержится в ГОСТ 27905.1.
Фактическая характеристика изоляции при эксплуатации зависит от конкретных условий, которые могут меняться в зависимости от воздействия окружающей среды, рабочих циклов изделия. Кроме того, прогнозируемая характеристика при эксплуатации зависит от относительного значения размеров, надежности периода использования сопряженного оборудования и экономической целесообразности. Для изделий некоторых видов целесообразно установить значение температуры изоляции, превышающей нормальную или ниже нормальной. Такие случаи могут иметь место, когда ожидается срок службы короче или длиннее нормального, или существуют особые условия эксплуатации.
Срок службы изоляции зависит от защиты от кислорода, влаги, загрязнений и химических воздействий. Следовательно, при данной температуре срок службы изоляции может увеличиваться, если она защищена от воздействия промышленной атмосферы.
Использование химически инертных газов или жидкостей в качестве охлаждающей или защитной среды может повышать стойкость изоляции к воздействию температуры.
Наряду со старением, которому подвергается изоляция, некоторые материалы при нагревании размягчаются и теряют исходные свойства, которые могут восстанавливаться после охлаждения. Такие изоляционные материалы не являются непригодными для их использования.
Ответственность за выбор соответствующих материалов и систем изоляции лежит на изготовителе электротехнического изделия. Основанием для установления рациональных температурных пределов изоляции является только опыт или соответствующие испытания. Опыт эксплуатации является важным критерием при выборе материалов и систем. Основанием для выбора в случае новых материалов и систем являются соответствующие испытания (см. раздел 4).
Многие электроизоляционные материалы, относящиеся к одному основному типу, поставляют в модификациях с разной нагревостойкостью. Следовательно, общая химическая природа электроизоляционного материала не характеризует их термические возможности. При использовании изоляции в электротехнических изделиях характеристики нагревостойкости отдельных материалов могут меняться в зависимости от их комбинации. Нагревостойкость изоляции в электротехнических изделиях также сильно зависит от конкретных функций, возложенных на них.
С точки зрения применения в электротехнических изделиях, испытание материалов служит двум целям: оценить материал, предназначенный для использования в системе изоляции в качестве компонента, а также материал, используемый отдельно или составляющий часть простой комбинации, используемой как система изоляции.
Как правило, можно считать, что испытания и опыты являются приемлемой основой для термической оценки электроизоляционных материалов.
Необходим осторожный подход к использованию результатов испытаний с тем, чтобы быть уверенным в их соответствии. Действительно, часто можно проводить оценку, используя результаты опытов разного типа.
Общепринятой основой оценки нагревостойкости электроизоляционных материалов являются испытания и опыт эксплуатации.
Как следует из ГОСТ 27710, при разработке методов испытаний по оценке нагревостойкости материалов могут быть использованы следующие определения:
Различные температурные индексы и половинные интервалы для одного материала можно получить, если для графика нагревостойкости использовать различные испытательные критерии и конечные точки. Различные температурные индексы и половинные интервалы могут указывать на различную нагревостойкость и, следовательно, определяют возможности использования материала.
Испытания стандартных образцов могут дать результаты, отличающиеся от результатов испытаний на образцах, имеющих тот вид, в котором материал будет использоваться. Следовательно, результаты испытаний систем изоляции можно использовать для проверки соответствия материала его применению.
При оценке нагревостойкости систем изоляции предпочтительно основываться на соответствующем опыте эксплуатации. Если такой опыт отсутствует, следует провести соответствующие функциональные испытания. Для этого необходимо иметь опробованную на практике систему, используемую в качестве эталонной системы изоляции.
Эталонная система должна быть описана на основании опыта эксплуатации, и должно быть сформулировано руководство для конкретного оборудования, содержащее информацию о том, как система изоляции может быть использована в качестве эталонной.