(Действующий) Свод правил СП 14.13330.2014 "СНиП II-7-81*. Строительство в...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
При осмотре сооружения надлежит зафиксировать, наряду с другими возможными проявлениями перенесенного сооружением землетрясения, наличие или отсутствие в сооружении повреждений в виде трещин и раскрытия швов бетонных сооружений и остаточных деформаций грунтовых сооружений и насыпей.
При наличии видимых повреждений, способных привести к аварии, следует оперативно оценить возникшую опасность и при необходимости - оповестить о ней административные органы и МЧС.
Таблица В.1 - Рекомендуемый состав геодинамического мониторинга на гидротехнических объектах
Объект мониторинга
Задача мониторинга
Вид геодинамических наблюдений
Активность геодинамических (природных и техногенных) процессов
Периодичность наблюдений в нормальном режиме
Сейсмическая активность в баллах
Активность прочих геодинамических процессов *
Плотины всех видов при высоте сооружения 100 м и болееКонтроль сейсмостойкости плотиныИнженерно-сейсмометрический мониторинг
Высокая:
8 и более баллов.
Средняя:
7-8 баллов
Высокая Средняя
Ждущий режим
Контроль деформаций сооружения и основанияГеодезический мониторинг
Высокая
Средняя
Низкая
Высокая Средняя Низкая
Не менее 1 раза в 3 месяца
Контроль изменения физико-механических свойств и напряженно-деформированного состояния плотины и основанияГеофизический мониторинг:сейсмотомография;ультразвуковое профилирование и каротаж;термометрия;акустико-эмиссионные измерения
Высокая
Средняя
Высокая Средняя
Не менее 1 раза в полгода
Контроль гидрогеодеформационных процессовПьезометрия, расходометрия
Высокая
Средняя
Высокая Средняя
Не менее 1 раза в неделю или непрерывная регистрация
Глубокие водохранилища (с плотинами высотой 100 м и более)Контроль сейсмического режима.Выявление вызванной сейсмичностиСейсмологический мониторинг на локальной сети
Высокая:
8 баллов и более.
Средняя:
7-8 баллов.
Низкая:
менее 7 баллов
Высокая
Средняя
Низкая
Ждущий режим
Контроль деформаций в районе водохранилищаГеодезический мониторинг
Высокая
Средняя
Низкая
Высокая
Средняя Низкая
Не менее 1 раза в 3 месяца
Контроль за изменением физико-механических свойств и напряженно-деформированного состояния приповерхностных частей земной коры в районе водохранилищаГеофизический мониторинг:сейсмопрофилирование в районе водохранилища; электрометрия
Высокая
Средняя
Высокая
Средняя
Не менее 1 раза в 6 месяцев
Контроль гидрогеодеформационного поляПьезометрия, расходометрия
Высокая
Средняя
Высокая
Средняя
Не менее 1 раза в месяц
Водохранилища глубиной менее 100 мКонтроль оползневых процессов и процессов переработки береговГеодезический мониторинг
Высокая
Средняя
Низкая
Высокая Средняя Низкая
Не менее 1 раза в 6 месяцев
Геофизический мониторинг: акустико-эмиссионные измерения;электрометрия
Высокая
Средняя
Высокая Средняя
Не менее 1 раза в 6 месяцев
Подземные гидротехнические сооружения - машинные залы, тоннели и др.Контроль напряженно-деформационного состояния вмещающего массива на различных масштабных уровнях сейсмичностиУльтразвуковой, акустико-эмиссионный и высокочастотный сейсмический каротаж вееров скважин
Высокая
Средняя
Высокая Средняя
Не менее 1 раза в 3 месяца
Контроль горного давления, прогноз горных ударовУльтразвуковой каротаж. Акустико-эмиссионное профилирование и каротаж.Гидроразрыв
Высокая
Средняя
Высокая Средняя
Не менее 1 раза в 3 месяца
Плотины всех видов и классов высотой менее 100 м. ГАЭС и другие гидротехнические сооруженияКонтроль прочности и деформативности несущих бетонных и железобетонных конструкцийУльтразвуковое и высокочастотное сейсмическое профилирование
Высокая
Средняя
Высокая Средняя
1 раз в 3-5 лет, после землетрясений интенсивностью 7-8 баллов
Контроль трубопроводовАкустико-эмиссионный мониторинг
Высокая
Средняя
Высокая Средняя
Непрерывно
Ультразвуковые просвечивания несущих конструкций
Высокая
Средняя
Высокая Средняя
1 раз в 3-5 лет, после землетрясений интенсивностью 7-8 баллов
Контроль фильтрационных процессовСпециальные электрометрические наблюдения
Высокая
Средняя
Высокая Средняя
1 раз в 3-5 лет, после землетрясений интенсивностью 7-8 баллов
Пьезометрия, расходометрия
Высокая
Средняя
Высокая Средняя
Непрерывно
* Под активностью прочих геодинамических процессов подразумевают современные изменения напряженно-деформированного состояния земной коры, теплового потока, гидрогеодеформационного поля, а также оползневые и обвальные процессы, вызванные природными и техногенными факторами.
Приложение Г
(справочное)

Уточнение исходной сейсмичности

Г.1 Общие положения

Г.1.1 Транспортные сооружения в сейсмических районах следует рассматривать как составные части единой природно-технической транспортной системы, подвергающейся при землетрясениях поражающим факторам (воздействиям) в виде сейсмических волн в грунте, тектонических разрывов, оползней, обвалов, снежных лавин, селевых и водно-песчаных потоков, разжижения грунта, цунами.
Г.1.2 Мероприятия по защите транспортных сооружений от землетрясений разрабатывают и осуществляют с целью минимизации социальных потерь и экономического ущерба посредством предотвращения отказа транспортной инфраструктуры, функционирование которой необходимо для обеспечения спасательных и аварийных работ, а также возможной эвакуации населения из района стихийного бедствия.
Г.1.3 Мероприятия по защите от землетрясений должны предусматривать в таком составе и объеме, чтобы объект выдержал расчетное сейсмическое воздействие без обрушения несущих конструкций, а также без таких повреждений, которые могут стать причиной аварий транспортных средств, привести к потере управления дорогами и портами, вызвать длительное прекращение движения транспорта в результате землетрясения.
Г.1.4 Мероприятия защиты от землетрясений объектов нормальной и повышенной сейсмостойкости разрабатывают по указаниям настоящих правил на основе предварительной оценки сейсмической опасности по картам общего сейсмического районирования ОСР-97-А и ОСР-97-В с уточнением исходной сейсмичности по результатам научно-исследовательских работ, фондовым и справочным материалам, а также применением данных сейсморазведки и корреляционных уравнений инженерной сейсмологии для учета влияния местных инженерно-геологических и геоморфологических условий на сейсмичность участков строительства наземных объектов (инженерно-геологических условий и глубины заложения выработок на сейсмичность участков строительства тоннелей).
Г.1.5 Работы по содержанию объектов нормальной и повышенной сейсмостойкости должны включать в себя периодический визуальный контроль за их состоянием, обследование после сейсмических толчков силой 6 и более баллов, в особенности в местах с неблагоприятными инженерно-геологическими и геоморфологическими условиями, разработку и осуществление мер по ремонту и усилению конструкций, получивших повреждения при землетрясениях и других опасных литосферных, гидросферных и атмосферных процессах, а также при техногенных воздействиях.
Г.1.6 Мероприятия антисейсмической защиты зданий и сооружений первого класса сейсмостойкости следует разрабатывать с учетом силы максимального расчетного землетрясения (МРЗ). Силу МРЗ определяют на основании материалов детальных геологических, сейсмотектонических и геофизических исследований опасности землетрясений и сопутствующих им явлений (процессов) в районе строительства. Во всех случаях силу МРЗ принимают не менее силы землетрясения, повторяющегося в среднем один раз за 2000 лет, и не более силы землетрясения, повторяющегося в среднем один раз за 5000 лет.
Г.1.7 Если сила МРЗ на участке строительства объекта первого класса сейсмостойкости с учетом влияния на сейсмичность местных инженерно-геологических и геоморфологических условий превышает 9 баллов по шкале MSK-64, то в дополнение к настоящим правилам следует руководствоваться требованиями [5].

Г.2 Уточнение исходной сейсмичности

Г.2.1 Исходную сейсмическую опасность пункта строительства в целочисленных баллах шкалы MSK-64 следует определять:
при проектировании объектов нормальной сейсмостойкости по карте ОСР-97-А;
при проектировании объектов повышенной сейсмостойкости по карте ОСР-97-В.
Г.2.2 Исходные амплитудные характеристики колебаний грунта в горизонтальной плоскости в районах (пунктах) сейсмичностью 6, 7, 8, 9 и 10 баллов для площадок, расположенных на ровных участках местности и сложенных средними по сейсмическим свойствам грунтами, принимаются следующими:
при сейсмичности 6 баллов:
50 - ускорения, 4,0 см/с - скорости, 2,0 см - перемещения;
при сейсмичности 7 баллов:
100 - ускорения, 8,0 см/с - скорости, 4,0 см - перемещения;
при сейсмичности 8 баллов:
200 - ускорения, 16,0 см/с - скорости, 8,0 см - перемещения;
при сейсмичности 9 баллов:
400 - ускорения, 32,0 см/с - скорости, 16,0 см - перемещения;
при сейсмичности 10 баллов:
800 - ускорения, 64,0 см/с - скорости, 32,0 см - перемещения.
Примечание - К средним по сейсмическим свойствам грунтам относят песчано-глинистые отложения с сейсмической жесткостью , где - плотность грунта, ; - скорость поперечной сейсмической волны в грунте, м/с.
Г.2.3 Исходные амплитудные характеристики колебаний среднего по сейсмическим свойствам грунта корректируют с применением результатов научно-исследовательских работ по актуализации карт ОСР-97, фондовых и справочных материалов с уточнением силы землетрясения в районе строительства до десятых долей целого балла.
Г.2.4 Уточненная сила землетрясения в районе (пункте) строительства может отличаться от сейсмичности района, указанной на выбранной карте ОСР-97, на положительное или отрицательное значение . В любом случае для дальнейшего расчета принимают, что модуль поправки не должен превышать 1,0.
Г.2.5 По приращению балльности определяют поправку к исходным амплитудным характеристикам колебаний грунта в виде коэффициента, который находят по формуле
, (Г.1)
где - приращение балльности в долях целого балла, найденное при уточнении исходной сейсмичности.
Г.2.6 При проектировании объектов особой сейсмостойкости для определения силы максимального землетрясения по комплексу геологических, геофизических и геохимических данных составляют карты опасных сейсмогенерирующих структур в радиусе 100 км от объекта. На этой основе с учетом сейсмологических сведений (наблюдаемая, историческая и палеосейсмичность) выделяются зоны возможных очагов землетрясений и от этих зон рассчитывают сейсмические воздействия для средних по сейсмическим свойствам грунтов и ровных площадок на участке строительства.
Г.2.7 Для характеристики сейсмогенерирующих структур проводят анализ фондовых и литературных источников геолого-геофизического и сейсмологического содержания совместно с материалами полевых геологических работ, сейсморазведки, эманационной и газовой съемок на ключевых участках, результатами дешифрования аэро- и космических снимков, данными регистрации сейсмодислокаций радиоуглеродным методом.
Г.2.8 При выполнении геофизических исследований для обеспечения строительства объекта особой сейсмостойкости, как правило, следует проводить сейсмологические наблюдения сетью временных станций с целью подтверждения данных о выделенных по фондовым и справочным материалам активных очагах землетрясений по инструментально зафиксированным слабым толчкам и получения информации о распределении их эпицентров по глубине.
Г.2.9 Установленная сила максимального расчетного землетрясения отличается от сейсмичности района по карте ОСР-97-В на значение . По приращению балльности определяют поправку в виде множителя к исходным амплитудным характеристикам колебаний грунта при землетрясении, сила которого указана на карте ОСР-97-В. Поправочный коэффициент находят по формуле (Г.1).

Г.3 Сейсмическое микрорайонирование

Г.3.1 Материалы работ по сейсмическому микрорайонированию (СМР) участков строительства транспортных объектов должны содержать количественные оценки влияния особенностей залегания слоев и сейсмических свойств грунта расчетной толщи на амплитудные и спектральные характеристики сейсмического воздействия.
Г.3.2 Число микрозон различной сейсмической опасности, выделяемых на участке строительства, определяют в зависимости от неоднородности строения исследуемой грунтовой толщи и изменчивостью сейсмических свойств грунта. При СМР участков больших мостовых переходов, как правило, следует выделять микрозоны русла реки, ее пойм и береговых склонов. На участках возведения малых и средних мостов достаточно выделить одну микрозону по данным разведочного бурения на площадке опоры с наименее благоприятными свойствами грунта.
Г.3.3 При выборе положений верхней и нижней границ расчетной толщи, границы слагающих слоев нужно учитывать свойства грунтов инженерно-геологического разреза, тип и конструктивное решение фундаментов, глубину их заложения, влияние природно-техногенных воздействий на сохранность и свойства грунтов в транспортном коридоре.
Примечание - На участках распространения многолетнемерзлых грунтов мощность деятельного слоя следует принимать от поверхности грунта до уровня нормативной глубины сезонного оттаивания мерзлых грунтов.
Г.3.4 Сейсмичность площадок строительства мостовых опор с массивными фундаментами мелкого заложения устанавливают в зависимости от сейсмических свойств грунта расчетной толщи мощностью 10 м, расположенной ниже отметок заложения фундаментов, сооружаемых в открытых котлованах. Если в пределах разведанной глубины инженерно-геологического разреза 10-метровый слой подстилается слоем менее прочного грунта, то нижнюю границу расчетной толщи следует принимать в уровне подошвы слабого подстилающего слоя, а ее верхнюю границу - на отметках низа фундаментов. Мощность слоев грунта в пределах расчетной толщи определяют по данным инженерно-геологических разрезов, соответствующих центральным осям фундамента.
Г.3.5 Для мостовых опор с фундаментами глубокого заложения положение верхней границы расчетной толщи грунта устанавливают с учетом устойчивого уширения подмостового русла (срезки), общего размыва грунта у опоры, требований планирования набережных и технологии сооружения фундаментов. Из состава расчетной толщи исключают грунт насыпей подходов и залегающие с поверхности неуплотненные насыпные грунты, слои ила, торфа, склонные к разжижению водонасыщенные рыхлые песчаные, а также очень слабые глинистые грунты текучепластичной и текучей консистенции.
Г.3.6 Для мостовых опор с фундаментами из свай-стоек нижнюю границу расчетной толщи принимают в уровне кровли скальной породы, твердомерзлого нескального или другого малосжимаемого грунта (глины твердой консистенции со статическим модулем деформации Е > 50 МПа, крупнообломочных отложений с песчаным заполнителем или с содержанием не более 40% глинистого заполнителя), на который опираются гибкие сваи-стойки. Если мощность неконсолидированного слоя оказывается меньше 10 м, то в состав расчетной толщи включают часть скального массива, твердомерзлого нескального или другого малосжимаемого грунта, с тем чтобы общая мощность расчетной толщи была не менее 10 м. То же правило действует при определении нижней границы расчетной толщи в основании столбчатых (свайных) опор, опирающихся на малосжимаемый грунт.
Г.3.7 Для мостовых опор с фундаментами (телом опор ниже ригеля) из висячих свай нижнюю границу расчетной толщи можно принимать в уровне нижних концов свай, но не менее 10 м от верхней границы расчетной толщи. Если в инженерно-геологическом разрезе присутствуют линзы или прослойки менее прочного грунта под слоем, в который погружены нижние концы свай, нужно считать, что нижняя граница расчетной толщи проходит по подошве наиболее заглубленного слабого слоя инженерно-геологического разреза. Во всех случаях мощность расчетной толщи при проектировании мостовых опор с фундаментами из висячих свай принимают не ниже уровня поверхности достигнутой при бурении разведочных скважин и не более 30 м.
Г.3.8 Для мостовых опор с массивными фундаментами глубокого заложения (опускными колодцами), опертыми на скальную породу, твердую глину или малосжимаемые гравийно-галечниковые отложения, сейсмичность строительных площадок, как правило, устанавливают в зависимости от сейсмических свойств массива, расположенного сбоку от фундамента, принимая мощность расчетной толщи от ее верхней границы не менее 10 м.
Примечание - При учете сил инерции в неконсолидированном слое и сейсмического давления грунта на боковые грани опускного колодца допускается в качестве расчетной толщи использовать малосжимаемый грунт мощностью 10 м, считая вниз от его кровли (отметки подошвы опускного колодца).