(Действующий) Постановление Правительства РФ от 1 декабря 1998 г. N 1417 "Об...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
Энергетический выход реакции (17,6 МэВ) реализуется в виде кинетической энергии нейтрона (80 процентов) и ядра гелия (20 процентов). Нейтрон, покидающий зону реакции, передает свою энергию поглотителю (бланкету), содержащему литий и охлаждаемому теплоносителем. Вырабатываемое тепло преобразуется в электрическую энергию. Энергия ядер гелия идет на поддержание термоядерной реакции. Взаимодействие нейтронов с литием приводит к воспроизводству трития, которого в естественных условиях практически нет. Запасы дейтерия в природе практически не ограничены, а лития достаточно велики.
Осуществление самоподдерживающейся D-Т реакции возможно при одновременной реализации следующих двух условий:
нагрев топливной смеси до температур около 100 млн. градусов, при которых вещество находится в состоянии плазмы;
обеспечение устойчивого удержания высокотемпературной плазмы.
Существуют безнейтронные реакции синтеза, которые потенциально могут значительно снизить биологическую опасность термоядерных реакторов. Однако для их использования требуются еще более высокие параметры плазмы, поэтому подобные реакции можно рассматривать как более далекую перспективу.
Создание термоядерного реактора требует решения широкого круга научных и технических проблем с использованием мировых научных достижений и технологий. Необходимые для осуществления управляемой термоядерной реакции параметры плазмы были получены на системах с магнитным удержанием типа "токамак" (тороидальная камера с магнитными катушками), идея и первые разработки которых принадлежат российским ученым. Полученные результаты позволили ученым СССР, США, стран Евратома и Японии в течение 1988-1990 годов совместно разработать эскизный проект Международного термоядерного экспериментального реактора ИТЭР.
Соглашением и поправкой к нему от 22 сентября 1998 г. предусмотрено в течение 1992-2001 годов разработать технический проект ИТЭР, адаптированный к предлагаемым местам сооружения реактора, и выполнить согласованный план научно-исследовательских и опытно-конструкторских работ в его обоснование. В конце этого периода должна быть подготовлена концепция для выбора места сооружения реактора из числа предлагаемых и принято решение о сооружении реактора ИТЭР.

2. Цели и задачи Программы

Целями Программы являются:
обоснование научно-технической осуществимости использования энергии термоядерной реакции в мирных целях;
разработка адаптированного к предлагаемым местам сооружения технического проекта Международного термоядерного экспериментального реактора в соответствии с Соглашением и поправкой к нему от 22 сентября 1998 г.
Для разработки технического проекта ИТЭР необходимо выполнить большой объем научно-исследовательских и опытно-конструкторских работ по обоснованию его основных систем:
сверхпроводниковой магнитной системы и криостата;
вакуумной камеры и радиационной защиты;
дивертора;
бланкета и первой стенки;
системы нагрева плазмы и поддержания тока;
системы охлаждения термоядерного реактора;
системы дистанционного обслуживания и ремонта термоядерного реактора;
системы диагностики плазмы;
системы сбора, хранения и представления экспериментальных данных;
системы управления термоядерным реактором;
вакуумно-тритиевого технологического комплекса;
систем обеспечения.
Сверхпроводниковая магнитная система, состоящая из обмоток тороидального и полоидального магнитных полей и центрального соленоида, должна обеспечить оптимальные условия формирования и устойчивого удержания плазмы. Криостат диаметром и высотой около 36 м, в который помещена магнитная система, обеспечивает поддержание температуры на указанных обмотках около 4°К. Величина магнитного поля в центре плазменного шнура на радиусе 8,1 м должна составлять ~5,7 Тл, а в центральном соленоиде достигать 13 Тл.
Вакуумная камера, размещенная внутри тороидальных обмоток, должна обеспечивать необходимые вакуумные условия для плазмы. Следует предусмотреть двойной барьер для предотвращения утечек трития (вакуумная камера и криостат).
Радиационная защита предназначена для снижения нейтронного потока на сверхпроводниковые магнитные катушки до уровня не более 10**19 н/см2 и поглощенной дозы излучения - не более 3 * 10**6 Гр.
Дивертор обеспечивает очистку плазмы от примесей и отвод энергии попадающих в него частиц при плотности потока энергии в нем до 5/20 МВт/м2. Поскольку срок службы элементов дивертора ограничен эрозией и радиационной стойкостью конструкционных материалов, необходимо предусмотреть их дистанционную замену.
Бланкет в термоядерном реакторе предназначен для поглощения нейтронов с энергией 14 МэВ, рождающихся в результате реакции синтеза, и преобразования этой энергии в тепловую, а также для воспроизводства трития. Для решения задач, связанных с отработкой элементов конструкций демонстрационных и промышленных реакторов будущего, целесообразно разработать экспериментальные модули бланкета различных типов.
Первая стенка, обращенная непосредственно к плазме, должна выдерживать поток электромагнитных и корпускулярных излучений, покидающих плазму. В связи с эрозией материала первой стенки следует предусмотреть возможность регулярной замены ее модулей.
Система нагрева плазмы и поддержания тока должна обеспечить нагрев плазмы до термоядерных температур (100 млн. градусов) и поддержание продольного тока плазмы (21 МА), необходимого для ее длительного и устойчивого удержания. Для этих целей предстоит разработать мощные инжекторы нейтральных частиц и мощные генераторы высокочастотного (40 - 90 МГц) и сверхвысокочастотного (170 ГГц) электромагнитного излучения.
Система охлаждения термоядерного реактора должна обеспечить теплосъем со всех энергонапряженных систем и элементов реактора (бланкета, первой стенки, дивертора, вакуумной камеры и других) как в рабочем, так и в аварийном режимах, а система дистанционного обслуживания и ремонта термоядерного реактора - монтаж, демонтаж, ремонт и замену сильноактивированных элементов и узлов реактора в период его эксплуатации.
Система диагностики плазмы и система сбора, хранения и представления экспериментальных данных должны обеспечить получение и обработку информационных потоков о состоянии высокотемпературной плазмы во всех режимах работы термоядерного реактора.
Система управления термоядерным реактором обеспечивает получение информации о состоянии технологических систем реактора, реализацию необходимых режимов работы реактора и его систем, анализ информации при возникновении аварийной ситуации и вывод реактора из аварийного состояния.
Вакуумно-тритиевый технологический комплекс, включающий в себя вакуумную и тритиевую системы и систему подпитки плазмы топливом, должен обеспечить:
получение необходимых вакуумных условий в камере, криостате, системах нагрева, диагностики и другом оборудовании;
подготовку топливной смеси, извлечение трития из бланкета, разделение изотопов водорода для повторного использования трития и дейтерия, очистку газовых и водяных сред от трития;
подпитку плазмы топливом на уровне, обеспечивающем длительное протекание термоядерной реакции.
Во всех элементах вакуумно-тритиевого комплекса должен быть предусмотрен двойной барьер для предотвращения утечек трития.
Необходимо разработать проекты основных систем обеспечения: системы электропитания, криогенной системы и системы сброса тепла.
По всем элементам и системам реактора должна быть подготовлена детальная техническая документация для передачи промышленным предприятиям.
Технический проект ИТЭР должен быть адаптирован к предлагаемым местам сооружения реактора.
В целом технический проект должен быть разработан таким образом, чтобы реактор ИТЭР после его сооружения и ввода в действие позволил бы продемонстрировать возможность получения управляемого зажигания и длительного горения дейтерий-тритиевой плазмы, обеспечить ее устойчивое состояние, продемонстрировать технологии, присущие реактору, обеспечить комплексную проверку компонентов реактора, необходимых для использования энергии термоядерной реакции в практических целях.

3. Основные мероприятия Программы

В целях реализации Программы предусматривается осуществить комплекс мероприятий по следующим подпрограммам:
разработка методов нагрева и удержания плазмы термоядерного реактора;
разработка электрофизических и магнитных систем термоядерного реактора;
разработка ядерно-технологических систем термоядерного реактора;
разработка общеинженерных систем термоядерного реактора;
участие в испытании крупных модельных элементов термоядерного реактора на стендах;