(Действующий) Свод правил СП 27.13330.2011 "СНиП 2.03.04-84. Бетонные и...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
Таблица 5.14
Класс и марка арматуры
Модуль упругости арматуры , МПа ( )
12X13, 20X13
2,2
А240, А300, 30ХМ
2,1
А400, А500, , 20Х23Н18, 08Х17Т, 12Х18Н9Т, 45Х14Н14В2М
2,0
А600, А800, А1000,
1,9
В500, К1400, К1500
1,8
5.29 Влияние температуры на изменения модуля упругости арматуры учитывают умножением модуля упругости арматуры на коэффициент
. (5.23)
Значения коэффициента принимают по таблице 5.13 в зависимости от температуры в центре тяжести:
растянутой арматуры - при расчете по формулам (5.18, 6.20, 7.5, 7.19, 8.10, 8.13, 8.15, 8.37, 8.47);
сжатой арматуры - по формулам (5.18, 6.21, 8.14, 8.38).
5.30 В качестве расчетной диаграммы состояния (деформирования) арматуры, устанавливающей связь между напряжениями и относительными деформациями арматуры, принимают двухлинейную диаграмму (рисунок 5.2), которую используют при расчете железобетонных элементов по деформационной модели. Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми.
1187 × 782 пикс.     Открыть в новом окне
Напряжения в арматуре определяют в зависимости от относительных деформаций согласно диаграмме состояния арматуры по формулам:
при
; (5.24)
при
. (5.25)
Значение относительной деформации .
Значения принимают по формуле (5.23) и - по формуле (5.20).
5.31 С повышением температуры коэффициент температурного расширения арматуры увеличивается и значения его принимают по таблице 5.13 в зависимости от класса и марки арматуры и температуры ее нагрева.

6 Расчет элементов бетонных и железобетонных конструкций на воздействие температуры

Расчет температуры в бетоне железобетонных конструкций

6.1 Расчет распределения температуры в железобетонных конструкциях производят для установившегося теплового потока методом расчета температуры ограждающих конструкций. Температуру арматуры в сечениях железобетонных конструкций принимают равной температуре бетона в месте ее расположения.
6.2 Для конструкций, находящихся на открытом воздухе, коэффициент теплоотдачи наружной поверхности , , в зависимости от преобладающей скорости ветра зимой и летом определяется по формуле
, (6.1)
где - скорость ветра, м/с.
При определении наибольших усилий в конструкции от воздействия температуры, а также при определении максимальной температуры нагрева бетона и арматуры исходят из максимальной средних скоростей ветра (румбы) за июль или январь, повторяемость которых составляет 16% и более, согласно СНиП 23-01, но не менее 1 м/с.
6.3 Температуру бетона в сечениях конструкций при его нагреве в процессе эксплуатации определяют теплотехническим расчетом установившегося потока тепла при заданной по проекту расчетной температуре рабочего пространства или воздуха производственного помещения. Для конструкций, находящихся на открытом воздухе, наименьшие и наибольшие температуры бетона и арматуры определяют соответственно при минимальной зимней и максимальной летней температурах наружного воздуха района строительства.
6.4 Теплотехнический расчет статически неопределимых конструкций, работающих в условиях температурных воздействий, производят на расчетную температуру, вызывающую наибольшие усилия (в 4.12). При расчете наибольших усилий от температурных воздействий в конструкциях, находящихся на открытом воздухе, температуру бетона вычисляют соответственно по расчетной летней или зимней температуре наружного воздуха.
6.5 Коэффициент теплопроводности бетона , , в сухом состоянии принимают в зависимости от средней температуры бетона в сечении элемента (таблица 5.9).
Для конструкций, находящихся в помещении или на воздухе, но защищенных от воздействия ветра, коэффициент теплоотдачи наружной поверхности принимают в зависимости от температуры наружной поверхности и воздуха по таблице 6.1.
Таблица 6.1
Коэффициенты
Значения коэффициентов теплоотдачи наружной и внутренней поверхностей конструкции при температуре поверхности и воздуха, °С
-50
0
50
100
200
300
400
500
700
900
1100
1200
6
8
10
12
17
22
-
-
-
-
-
-
-
-
10
10
10
12
15
20
40
70
120
150
6.6 Коэффициент теплоотдачи внутренней поверхности конструкции находят методом расчета теплопередачи как для случая сложного теплообмена, и при определении распределения температуры бетона по сечению элемента допускают его принимать в зависимости от температуры воздуха производственного помещения или рабочего пространства теплового агрегата, как для .
6.7 Термическое сопротивление невентилируемой воздушной прослойки принимают независимо от ее толщины и направления равным 0,140 при 50°С; 0,095 - при 100°С; 0,035 - при 300°С и 0,013 - при 500°С.
6.8 При стационарном нагреве конструкции, состоящей из n-слоев, со стороны более нагретой поверхности температуру материала между слоями n-1 и n определяют по формуле
; (6.2)
температуру материала более нагретой поверхности - по формуле
; (6.3)
а температуру материала менее нагретой поверхности - по формуле
. (6.4)
В трехслойной конструкции температуру материала между первым и вторым слоями, считая слои от более нагретой поверхности, вычисляют по формуле
, (6.5)
а между вторым и третьим слоями - по формуле
. (6.6)
Температура менее нагретой поверхности третьего слоя равна
. (6.7)
Тепловой поток Q определяют из выражения
, (6.8)
где - температура воздуха производственного помещения или рабочего пространства теплового агрегата;
- температура наружного воздуха.
Сопротивление теплопередаче многослойной конструкции равно
244 × 49 пикс.     Открыть в новом окне
, (6.9)