(Утративший силу) Национальный стандарт Российской ФедерацииГОСТ Р 51317.4.3-2006 (МЭК...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Утративший силу
В настоящее время значительно увеличилось использование радиотелефонов и других радиочастотных излучающих устройств, действующих на частотах от 800 МГц до 6 ГГц. Эти устройства во многих случаях используют методы модуляции с непостоянной огибающей, например TDMA.
Кроме электромагнитной энергии, генерируемой намеренно, на ТС также воздействуют паразитные излучения, создаваемые такими источниками, как сварочное оборудование, тиристорные регуляторы, люминесцентные источники света, переключатели, коммутирующие индуктивные нагрузки и т. д. Воздействие данных излучений на ТС проявляется, как правило, в виде кондуктивных помех. Методы, используемые для предотвращения влияния на ТС радиочастотных электромагнитных полей, будут, как правило, также уменьшать эффекты воздействия паразитных излучений указанных выше источников.
Электромагнитная обстановка определяется напряженностью электромагнитного поля (напряженностью поля в вольтах на метр). Следует учитывать, что для измерения напряженности поля необходимо применение сложных измерительных приборов, а расчеты напряженности поля затруднены из-за влияния окружающих предметов или близости других ТС, которые будут искажать и/или отражать электромагнитные волны.

5 Степени жесткости испытаний

Степени жесткости испытаний приведены в таблице 1.

Таблица 1 - Степени жесткости испытаний, относящиеся к защите от излучений источников общего применения, цифровых радиотелефонов и других радиочастотных излучающих устройств

Степень жесткости испытаний
Напряженность испытательного поля, В/м/дБ (мкВ/м)
1
1/120
2
3/130
3
10/140
4
30/150
Х *
Специальная
* X - открытая степень жесткости испытаний, которая может быть установлена в стандартах на ТС конкретного вида и в технических документах на ТС.
При установлении требований помехоустойчивости ТС конкретного вида в отдельных участках полосы частот испытаний могут быть применены различные степени жесткости испытаний. Технические комитеты по стандартизации, разрабатывающие стандарты на продукцию, должны установить общую полосу частот испытаний, а также применяемые степени жесткости испытаний для участков полосы частот. Рекомендации для технических комитетов по стандартизации по выбору степеней жесткости испытаний приведены в приложении Д.
В таблице 1 регламентирована напряженность поля немодулированного сигнала. При испытаниях ТС сигнал должен быть модулирован по амплитуде при глубине модуляции 80% синусоидальным сигналом частотой 1 кГц для того, чтобы воспроизвести реальные условия воздействия помех (см. рисунок 1). Методы испытаний - в соответствии с разделом 8.
5.1 Степени жесткости испытаний, относящиеся к защите от излучений источников общего применения
Испытания, как правило, проводят во всей полосе частот от 80 до 1000 МГц.
Примечания
1 Методы испытаний ТС на устойчивость к излучаемой электромагнитной энергии установлены также в ГОСТР 51317.4.6 применительно к частотам ниже 80 МГц.
2 Техническими комитетами по стандартизации, разрабатывающими стандарты на продукцию, требования и методы испытаний, регламентированные настоящим стандартом и ГОСТ Р 51317.4.6, могут быть установлены для частот ниже и выше 80 МГц соответственно (см. приложение Е).
3 Техническими комитетами по стандартизации, разрабатывающими стандарты на продукцию, могут быть установлены альтернативные схемы модуляции.
5.2 Степени жесткости испытаний, относящиеся к защите от излучений цифровых радиотелефонов и других радиочастотных излучающих устройств
Испытания, как правило, проводят в полосах частот от 800 до 960 МГц и от 1,4 до 6 ГГц.
Частоты или участки частот, выбираемые для испытаний ТС, ограничивают с учетом рабочих частот действующих подвижных радиотелефонов и других радиочастотных источников излучений. Допускается проведение испытаний не во всей полосе частот от 1,4 до 6 ГГц. При установлении требований помехоустойчивости ТС конкретного вида в отдельных участках полос частот испытаний могут быть применены различные степени жесткости испытаний.
Если ТС должно соответствовать только требованиям, установленным в конкретной стране, полоса частот 1,4-6 ГГц, в которой проводят испытания, может быть уменьшена и ограничена значениями полосы частот, выделенной для цифровых радиотелефонов и других радиочастотных источников излучений, применяемых в данной стране. В этом случае решение о проведении испытаний в полосе частот, превышающей выделенную полосу, должно быть отражено в протоколе испытаний.
Примечания
1 В приложении А приведены обоснования выбора модуляции синусоидальным сигналом при испытаниях, относящихся к устойчивости ТС в условиях помехоэмиссии от цифровых радиотелефонов и других радиочастотных источников излучений.
2 В приложении Д приведены рекомендации для технических комитетов по стандартизации, разрабатывающих стандарты на продукцию, по выбору степеней жесткости испытаний.
3 Полосы частот испытаний, указанные в таблице 1, включают в себя полосы, выделяемые для цифровых радиотелефонов (см. приложение Ж).
4 На частотах свыше 800 МГц опасность нарушения функционирования ТС при воздействии электромагнитных полей связана, главным образом, с радиотелефонными системами и другими источниками намеренного излучения, имеющими мощность, эквивалентную мощности радиотелефонных систем. Другие системы, работающие на частотах свыше 800 МГц, например локальные сети, использующие радиосредства на частотах 2,4 ГГц или выше, имеют в основном крайне малую мощность (как правило, менее 100 мВт) и поэтому маловероятно, чтобы они вызывали серьезные проблемы.

6 Испытательное оборудование

Для испытаний ТС на устойчивость к радиочастотному полю рекомендуются следующие средства испытаний:
- безэховая камера, размеры которой должны обеспечить достаточную область однородного поля применительно к ИТС. Для подавления отражений в полубезэховых камерах могут быть применены дополнительные поглощающие материалы;
- помехоподавляющие фильтры, которые не должны вызывать резонансных явлений в соединительных линиях;
- генератор(ы) радиочастотных сигналов, обеспечивающий(е) перекрытие полосы частот, представляющей интерес, и амплитудную модуляцию сигнала синусоидальным напряжением частотой 1 кГц при глубине модуляции 80%. Генератор(ы) должен(ны) иметь возможность перестройки частоты в автоматическом режиме со скоростью не более  декад/с. В случае применения радиочастотных синтезаторов должна быть обеспечена программируемая шаговая перестройка частоты с установлением частотно-зависимого шага перестройки и возможностью задержки на каждой частоте. Генератор(ы) должен(ы) быть оборудован(ы) ручной перестройкой частоты и иметь возможность изменения амплитуды сигнала и глубины модуляции.
При необходимости для исключения воздействия гармоник радиочастотного сигнала на испытуемые радиоприемные устройства применяют фильтры низких частот или полосовые фильтры;
- усилители мощности, предназначенные для усиления радиочастотного сигнала (немодулированного и модулированного) и обеспечения создания излучающей антенной испытательного поля необходимой напряженности. Уровень гармоник, вносимых усилителем мощности, должен быть таким, чтобы на каждой частоте гармоники любой измеренный уровень напряженности поля в плоскости однородного поля был по крайней мере на 6 дБ ниже напряженности поля основной составляющей (см. приложение Г);
- излучающие антенны (см. приложение Б): биконические, логопериодические рупорные или другие антенны с линейной поляризацией, соответствующие требованиям к полосе частот испытаний;
- изотропную антенну (датчик) для измерения напряженности поля, включающую в себя усилитель и электронно-оптический преобразователь, обладающие достаточной устойчивостью к воздействию измеряемого поля, а также волоконно-оптическую линию для связи с индикатором, установленным вне безэховой камеры (при соответствующих экранировании и фильтрации может быть использована кабельная линия);
- вспомогательное оборудование для регистрации мощности сигнала, обеспечивающей создание испытательного поля заданной напряженности, и для управления созданием указанного поля в процессе испытаний. Особое внимание должно быть уделено обеспечению помехоустойчивости вспомогательного оборудования, применяемого при испытаниях.
6.1 Испытательная установка
Учитывая значительную напряженность генерируемого испытательного поля, испытания должны проводиться в экранированном помещении, с тем чтобы исключить помехи радиослужбам. Кроме того, экранированное помещение позволяет исключить влияние испытательного поля на вспомогательное оборудование, учитывая то, что большинство образцов оборудования для сбора, регистрации и отображения результатов измерений восприимчиво к внешнему полю, генерируемому в процессе испытаний на помехоустойчивость. Должны быть приняты меры по фильтрации кондуктивных помех в соединительных кабелях, входящих в экранированное помещение и выходящих из экранированного помещения.
Предпочтительная испытательная установка включает в себя экранированное помещение, внутренние поверхности которого покрыты радиопоглощающим материалом, размерами, позволяющими разместить ИТС и обеспечить соответствующее управление напряженностью испытательного поля. Целесообразно применять безэховые камеры или модифицированные полубезэховые камеры. В присоединенных дополнительных экранированных помещениях должно быть размещено оборудование, обеспечивающее генерирование высокочастотных сигналов, проведение измерений и контроль функционирования ИТС (см. рисунок 2).
Безэховые камеры менее эффективны на низких частотах. В связи с этим особое внимание должно быть уделено обеспечению однородности испытательного поля на низких частотах. Дополнительные рекомендации по использованию безэховых камер приведены в приложении В.
6.2 Калибровка испытательного поля
Цель калибровки заключается в том, чтобы однородность испытательного электромагнитного поля, воздействующего на ИТС, была достаточной для обеспечения достоверности результатов испытаний.
Настоящий стандарт основывается на применении концепции "плоскости однородного поля" (см. рисунки 3 и 4), которая представляет собой гипотетическую вертикальную плоскость, на которой отклонения напряженности испытательного электромагнитного поля от установленного значения находятся в заданных пределах.
При калибровке поля должна быть продемонстрирована способность испытательной установки и испытательного оборудования генерировать испытательное поле с установленной напряженностью в плоскости однородного поля. Одновременно получают совокупность значений параметров испытательного оборудования, позволяющих провести испытания ТС на помехоустойчивость. Калибровку считают действительной для ИТС всех видов, стороны которых, подвергаемые воздействию испытательного поля (включая соединительные кабели), могут быть полностью покрыты плоскостью однородного поля.
Калибровку испытательного поля проводят в отсутствие ИТС. Модуляцию сигнала в процессе калибровки не применяют, чтобы обеспечить правильные показания измерительной антенны (датчика). При калибровке определяют зависимость между напряженностью испытательного поля в плоскости однородного поля и мощностью сигнала, подаваемого на излучающую антенну. В процессе испытаний значение мощности сигнала, который должен быть подан на излучающую антенну на каждой частоте испытаний, рассчитывают с использованием этой зависимости и значений напряженности поля, соответствующих установленной степени жесткости испытаний. Калибровка поля действительна при условии идентичности параметров испытательной установки при калибровке поля и проведении испытаний ТС. Поэтому значения параметров испытательной установки (относящихся к излучающей антенне, усилителю, дополнительным поглощающим материалам, кабелям) должны быть зафиксированы. Важно зафиксировать точные положения излучающих антенн и кабелей (насколько это практически возможно). При проведении испытаний антенны и кабели должны быть размещены так же, как и при калибровке поля. Незначительные их смещения оказывают существенное влияние на испытательное поле.
Полная калибровка испытательного поля должна проводиться один раз в год, а также при каждом внесении изменений в конфигурацию безэховой камеры (перемещении радиопоглощающего материала, изменении состава оборудования и т. д.). Перед каждой группой испытаний необходимо проводить проверку калибровки испытательного поля (см. раздел 8).
Излучающую антенну размещают на таком расстоянии от ИТС, чтобы калибруемая плоскость однородного поля находилась в главном лепестке диаграммы направленности антенны. Антенна для измерения напряженности поля должна быть расположена на расстоянии не менее 1 м от излучающей антенны. Предпочтительное расстояние между излучающей антенной и плоскостью однородного поля должно быть 3 м. Это расстояние отсчитывают от центра биконической антенны, конца логопериодической антенны и плоскости раскрыва рупорной или волноводной антенны. Расстояние между излучающей антенной и плоскостью однородного поля должно быть указано в протоколе испытаний. В случае расхождений результатов испытаний, полученных при различных расстояниях между излучающей антенной и плоскостью однородного поля, преимущество имеют результаты испытаний, полученные при расстоянии 3 м.
Размеры плоскости однородного поля должны быть по меньшей мере  м, за исключением случаев, когда ИТС и соединительные кабели могут быть полностью "освещены" при использовании плоскости однородного поля меньших размеров. Минимальные размеры плоскости однородного поля должны быть  м.
Лицевая сторона ИТС, подвергаемого воздействию испытательного поля, должна совпадать с плоскостью однородного поля (см. рисунки 5 и 6). Учитывая невозможность создания однородного испытательного поля в непосредственной близости к пластине заземления, нижний край плоскости однородного поля должен находиться на высоте не менее 0,8 м над пластиной заземления. По возможности ИТС размещают на этой высоте.
Для установления жесткости испытаний в случае, если ИТС и соединительные кабели размещены не на высоте 0,8 м, а в непосредственной близости к пластине заземления, а также в случае, если размеры стороны ИТС превышают  м, напряженность испытательного поля должна быть дополнительно зафиксирована в четырех точках плоскости однородного поля: на высоте 0,4 м над пластиной заземления и в точках, совпадающих с максимальными высотой и поперечными размерами ИТС. Результаты дополнительных измерений указывают в протоколе испытаний.
Из-за отражений от пола в полубезэховой камере трудно установить однородное испытательное поле вблизи пластины заземления. Для решения этой проблемы размещают на пластине заземления дополнительный радиопоглощающий материал (см. рисунок 2).
Измерение напряженности поля в плоскости однородного поля проводят в точках измерительной сетки, разнесенных друг от друга на расстояние 0,5 м (см. рисунок 4, представляющий собой пример плоскости однородного поля размерами  м).