(Действующий) Пособие по проектированию оснований зданий и сооружений (к СНиП...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
Принципиальная схема районирования территории по природным условиям, которая выполняется на топоснове, приведена в табл.35. При проведении данного районирования предполагается наличие ряда карт соответствующего масштаба: геоморфологической, инженерно-геологической, геолого-литологических комплексов, фильтрационных свойств грунтов, уровней подземных вод, водоупоров и слабопроницаемых прослоек, а также зон с различными значениями .
Таблица 35
Ин-
декс
Зона* (гидрогра- фическая)
Ин-
декс
Район (геоморфо- логический элемент)
Ин-
декс
Подрайон** (геолого-литог- рафический разрез, комплекс
Ин-
декс
Участок (тип режима)
Ин-
декс
Площадка
_______________
* Часть территории города, расположенная между рекой и притоками 1, 2, 3 и т.д. порядка.
** Характеризуется также прочностными и деформационными свойствами грунтов оснований.
I
Междуречье (наименование рек, лево- и правобережье)
А
Пойма
а
Разрез
1
Естественный (водораздельный, прибрежный и т.д.)
П                                           
П                                           
П
Часть территории участка, характери-
зующаяся постоян-
ными по простиранию и в разрезе фильтра-
ционными свойствами и краевыми условиями
                 
2
Слабонарушенный, естественный
П                                           
П                                           
П
 
 
                 
3
Искусственный
П                                                            
П                                                       
 
 
           
б
Разрез
1
2
3
        
           
в
Разрез
1
2
3
        
     
Б
Терраса
а
              
           
б
              
           
в
              
     
В
  
а
              
           
б
              
           
в
              
II
Междуречье
А
Пойма
а
              
           
б
              
           
в
              
Сочетание таксонов (табл.34, 35) позволяет на карте города выделить гидрогеологические элементы - участки территорий, для которых в дальнейшем принимаются расчетные схемы, а также служат основанием для размещения наблюдательных скважин.
На этом этапе решаются следующие основные задачи:
типизация гидродинамических условий (гидравлики потоков, их структуры, условий связи поверхностных и подземных вод, условия их залегания, питания и разгрузки, виды границ и типы граничных условий, типизация полей гидродинамических потоков, а также фильтрационного строения пластов);
изучение и типизация режимов подземных вод (в первую очередь грунтовых и вод зоны неполного насыщения, в том числе зоны аэрации);
выявление и типизация существующих и потенциальных факторов и источников изменений гидродинамических условий;
предварительный выбор расчетных схем.
2. Построение геофильтрационной модели. На этом этапе решаются следующие основные задачи:
схематизация гидродинамической обстановки (определение размеров и конфигурации отдельных областей фильтрации, типы граничных условий, установление характера изменчивости фильтрационных параметров в выделенных границах областей фильтрации, проведение соответствующего районирования);
схематизация техногенных условий (техногенной нагрузки) в виде различных по характеру составляющих водного баланса, условий застройки и проведение соответствующего районирования;
выделение гидродинамических (гидрогеологических) элементов, сочетающих гидродинамические условия и техногенную нагрузку;
выбор расчетной схемы для каждого гидродинамического (гидрогеологического) элемента и исходного уравнения (в зависимости от целесообразности применения в каждом конкретном случае гидродинамической или гидравлической теории движения подземных вод и наличия исходных данных), граничных условий, особенно в области питания.
3. Выполнение прогнозной оценки гидродинамической обстановки на данной территории проводится в зависимости от поставленной цели на основе решений, полученных аналитическим методом или с применением АВМ и ЭВМ; при этом необходимо оценивать не только возможность подъема уровней (напора), но их снижение, т.е. дренированность (естественную и искусственную).
4. Выполнение прогнозной оценки, возможности возникновения или интенсификации геологических процессов - неблагоприятных последствий изменения гидродинамической обстановки.
2.110. При проектировании оснований зданий и сооружений расчетный уровень ( ) подземных вод (определяется проектной организацией) необходимо принимать на 0,5 м выше прогнозного на потенциально подтопляемых территориях для микрорайонов новой застройки, реконструируемых городских территорий, отдельных зданий и сооружений массового строительства и на 0,75-1 м выше - для ответственных промышленных сооружений, уникальных гражданских зданий и для специальных зданий и сооружений, имеющих технические подполья глубиной более 3 м.
Примеры оценки потенциальной подтопляемости застраиваемой территории (участка).
Пример 1. Проектируется строительство предприятия химической промышленности на площадке, сложенной просадочными суглинками мощностью 12 м и подстилаемой юрскими глинами, =5 м. Тип грунтовых условий по просадочности - первый. Грунтовые воды, по данным изысканий, находятся на глубине =11 м. Площадка расположена в зоне переменного увлажнения. Природные условия территории по табл.32 относятся к схеме N 1.
Согласно заданию на проектирование количество потребляемой предприятием воды составляет 10000 м /сут на 1 га площади, которую будет занимать предприятие. В соответствии с табл.31 по количеству потребляемой воды предприятие относится к группе Б.
По табл.33 находим, что предприятие группы Б по природным условиям, соответствующим схеме N 1 (по табл.32), относятся к типу I территории по потенциальной подтопляемости, для которого вероятность подтопления значительная. Скорость подъема м/год за 10 лет и =10 м.
Отсюда определяем по зависимости (9) =(11-10)5=0,2, т.е. территория потенциально подтопляема, так как . По формуле (11) определяем =(11-5)/1=6 лет.
Таким образом, территория предприятия относится ко второй степени по потенциальной подтопляемости.
Пример 2. Проектируется строительство элеватора на площадке =10 м. По данным изысканий, на стадии выбора площадки, природные условия соответствуют схеме N 6 (табл.32). По количеству потребляемой воды (менее 50 м /сут на 1 га) элеватор относится к группе Д (табл.31).
По табл.33 определяем, что сочетание схемы природных условий с предприятием группы Д соответствует IV типу территории по ее потенциальной подтопляемости, т.е. возможность подтопления ее минимальна. Скорость подъема грунтовых вод =0,1 м/год, т.е. за 10 лет =1 м.
Определяем по зависимости (9) =(15-1)/10=1,4, т.е. территория не является потенциально подтопляемой, так как .
По формуле (11) определим =(15-10)/0,1=50 лет. Таким образом, территория элеватора по степени потенциальной подтопляемости ниже пятой ( лет), т.е. данную территорию следует считать условно потенциально неподтопляемой.
2.111(2.22). Если при прогнозируемом уровне подземных вод (пп.2.84(2.18)-2.106(2.21) возможно недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т.п., в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:
гидроизоляция подземных конструкций;
мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т.п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т.д.);
мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);
устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т.д.
Выбор одного или комплекса указанных мероприятий должен проводиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т.п.
2.112. При подъеме уровня подземных вод могут происходить дополнительные осадки грунтов оснований.
Подтопление застроенных территорий подземными водами ведет к водонасыщению грунтов оснований, ухудшению их деформационных характеристик и изменению напряженного состояния сжимаемой толщи основания.
Водонасыщение грунтов при подъеме подземных вод может привести к дополнительным деформациям оснований, в том числе вследствие дополнительных осадок. Это происходит в случаях, когда здания или сооружения были запроектированы без учета полного водонасыщения грунтов оснований, что независимо от подъема грунтовых вод требуют существующие нормативные документы.
Подъем подземных вод вызывает изменение напряженного состояния грунтов оснований вследствие гидростатического и гидродинамического взвешивания. При инфильтрации воды из постоянно действующего источника утечек в грунтах оснований возникают дополнительные вертикальные нормальные напряжения, величины которых связаны с динамикой продвижения фронта насыщения. Для зоны, расположенной ниже границы фронта, эти напряжения являются эффективными и вызывают дополнительные осадки.
2.113. Осадка грунтов в связи с подъемом уровня подземных вод определяется методом послойного суммирования. При этом принимается, что на каждый расчетный момент времени осадка достигает конечной величины. Поднимающийся уровень подземных вод в каждый момент времени разделяет сжимаемую зону на два слоя (водонасыщенный и с естественной влажностью) с различными деформационными характеристиками, поэтому даже для однородного основания расчет деформаций ведется как для двухслойного. При этом принимается, что сжимаемая толща грунта равна глубине расположения водоупора или менее ее величины.
Расчет деформации грунтов в процессе подъема уровня подземных вод ведется с учетом относительно малых скоростей динамики их уровня ( 1-1,5 м в год) на основе использования метода смены стационарных положений. В этом случае в каждый выбранный момент времени положение уровня подземных вод условно принимается установившимся и для него определяется конечная (стабилизированная) осадка.
В качестве основной расчетной схемы принимается случай равномерно распределенной нагрузки без возможности бокового расширения.
Последовательность расчета дополнительной осадки при подъеме уровня подземных вод следующая.
Для рассматриваемого сооружения строят эпюру сжимающих напряжений по вертикали при первоначальном положении уровня подземных вод , т.е. до его подъема, и определяют размер сжимаемой зоны . Затем разбивают на элементарные слои с учетом литологического строения грунтов основания, размера самой и характера эпюры распределения напряжений от нагрузки существующего здания или сооружения, например, =0,5-1 м.
Далее для конкретных гидрогеологических условий участка расположения сооружения, т.е. в заданной точке с координатами , на основе решения соответствующей фильтрационной задачи подъема уровня подземных вод находят функцию . Задаваясь последовательно различными величинами подъема подземных вод (лучше кратными элементарным слоям от нижней границы ), определяют время подъема . Для каждого значения находят значение с учетом взвешивающего действия поднявшихся подземных вод, причем . При этом принимают, что поднимающийся уровень грунтовых вод как бы останавливается и вновь полученная заново разбивается на элементарные слои, но таким образом, чтобы граница одного из слоев совпала с положением уровня подземных вод.
Затем для каждого расчетного положения уровня грунтовых вод суммируют осадки слоев, расположенных ниже уровня подземных вод . На основе полученных расчетов строят график , т.к. .
При подъеме уровня подземных вод под зданием и сооружением действуют силы, с одной стороны, вызывающие дополнительные сжимающие напряжения в грунте основания, с другой - снижающие их действие. Первая группа сил (на единицу площади) вызывает осадки грунтов. Это давление от веса здания и сооружения , от собственного веса грунта и от дополнительных сил.
Принимается, что к началу подъема уровня подземных вод осадки грунта с естественной влажностью под действием указанных сил уже произошли. Дополнительные силы - это силы, возникающие вследствие инфильтрации воды от источника (например, утечка из водонесущих коммуникаций или фильтрационные потери из различных водоемов), и силы, действие которых связано с образованием техногенных верховодок на плохопроницаемых прослойках . Они вызывают сжимающие напряжения в грунтах, залегающих ниже подошвы указанных прослоек.
Давление от действия сил веса воды при инфильтрации определяется по зависимости
,                                                                              (12)
где - недостаток насыщения (см. табл.36); - удельный вес воды, кН/м ; - положение фронта замачивания, продвигающегося вниз от действующего источника, м; определяется методом последовательных приближений по формуле
259 × 51 пикс.     Открыть в новом окне
,                                                   (13)