(Действующий) Свод правил СП 291.1325800.2017 "Конструкции грунтоцементные...

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
Б.4 Проектная документация на армированные грунтоцементные конструкции должна разрабатываться специализированной организацией, имеющей опыт проектирования грунтоцементных конструкций.
Разработанные конструктивные решения должны включать в себя:
- описание и обоснование конструктивных решений и расчетных схем по грунтоцементным конструкциям, принятых при расчете строительных конструкций:
- геометрические характеристики грунтоцементных конструкций (диаметр, угол наклона, длина, шаг);
- требуемые значения показателей прочностных и деформационных свойств грунтоцемента (прочность на одноосное сжатие или модуль деформации);
- значения расчетных нагрузок на грунтоцементную конструкцию (вертикальные, горизонтальные, выдергивающие, изгибающие моменты);
- деформации оснований и грунтовых массивов, включающих в себя грунтоцементные конструкции (вертикальные, горизонтальные, крены);
- расчетные технологические параметры изготовления грунтоцементных конструкций (давление, расход цемента).
Б.5 Раздел "Проект организации строительства" для проектирования фундаментных конструкций и оснований из ГЦЭ разрабатывается как для нового строительства, так и для реконструкции или иных условий (мероприятия для существующих объектов при необходимости их усиления или защиты от различного вида воздействий) и состоит из пояснительной записки, графической части и технологического регламента выполнения работ по устройству конструкций из ГЦЭ.
В технологическом регламенте указываются:
- расчетные технологические параметры изготовления ГЦЭ;
- очередность выполнения работ по устройству ГЦЭ на объекте;
- требования (задание) на выполнение опытных работ;
- требования по контролю качества ГЦЭ на этапе опытных работ и основных работ по изготовлению ГЦЭ.
Б.6 Раздел "Иная документация" для проектирования фундаментных конструкций и оснований из ГЦЭ разрабатывается для сохранности окружающей застройки, иных защитных и вспомогательных мероприятий при новом строительстве или реконструкции и состоит из:
- пояснительной записки, включающей разделы по Б.3 настоящего приложения;
- графической части, учитывающей требования Б.3 настоящего приложения;
- отчетных материалов опытных работ, если они предусмотрены на этапе изысканий.
Б.7 Графическая часть проектной документации на грунтоцементные конструкции, изготавливаемые по технологии глубинного перемешивания грунтов, в общем виде, должна содержать:
- масштабные инженерно-геологические планы и характерные разрезы с нанесением осей объекта капитального строительства, проектных контуров и размеров зон устройства грунтоцементных элементов и их абсолютных отметок, а также данные по физико-механическим свойствам грунтов;
- план расположения грунтоцементных конструкций с привязкой их осей к осям объекта капитального строительства, конструктивные разрезы с привязкой к инженерно-геологическим условиям (колонкам), спецификации грунтоцементных конструкций (номер, угол наклона, отметка верха и низа конструкции, диаметр, длина, число, общая длина), ведомости объемов работ и материалов.
Приложение В

Вяжущие вещества, применяемые при глубинном перемешивании

Таблица В.1
Тип грунта
Применяемое вяжущее
ГлинаИзвесть или известково-цементная смесь
Пластичная глина
Органические глины и илИзвестково-цементная смесь или смесь цемента с гранулированным доменным шлаком или известково-гипсовая смесь, цемент
ТорфЦемент или смесь цемента с гранулированным доменным шлаком или смесь цемента, извести и гипса
Сульфатные грунтыЦемент или смесь цемента с гранулированным доменным шлаком, сульфатостойкий цемент
Наносы илаИзвестково-цементная смесь или цемент
При влажном смешивании в большинстве случаев применяется обычный портландцемент. Для грунтов с высоким содержанием органики или для слабых глинистых грунтов могут применяться особые связующие. Смеси зольной пыли, гипса и цемента могут применяться, если требуется прочность обрабатываемого грунта 1-3 МПа.
Приложение Г

Устройство армированных грунтоцементных элементов

Грунтоцементный элемент с развитой боковой поверхностью имеет значительное предельное сопротивление грунтового основания, при этом может наблюдаться дефицит прочности по материалу. Армирование позволяет сблизить значения сопротивления грунтового основания и прочности ствола и добиться за счет этого оптимальных с точки зрения материалоемкости проектных решений.
Г.1 Преимущество железобетонных элементов по сравнению с металлическими (при их использовании в качестве постоянных конструкций) заключается в их коррозионной стойкости в неоднородном высокопористом материале, каким является грунтоцемент. Второе преимущество - возможность оснащать сердечники "рубашками" для образования антисейсмического и разделительного зазоров на части боковой поверхности.
Г.2 Армированные грунтоцементные комбинированные сваи целесообразно применять в следующих случаях:
- ленточных и групповых фундаментов под сильно нагруженные сооружения больших размеров в плане;
- безростверковых свайных фундаментов;
- свайных фундаментов с высоким ростверком, в том числе свай-колонн, в том числе в мерзлых грунтах;
- свай в проседающих и оседающих массивах, в том числе на намывных территориях;
- свайных фундаментов в сейсмических районах.
Г.3 Сборный железобетонный высокопрочный сердечник позволяет заменить буровую сваю значительно большего сечения, при этом, грунтоцементный элемент в песчаных грунтах обеспечивает высокое предельное сопротивление.
Г.4 Задача уменьшения негативного трения в оседающих и проседающих массивах грунта существенно упрощается за счет возможности размещения на части длины сердечников разделительного антифрикционного слоя из поролона, пенополистирола и др.
В сейсмических районах разделительный слой расчетной толщины на боковой поверхности сердечников позволяет создавать эффект "гибкого" подземного этажа и снижения сейсмических нагрузок.
Г.5 Армирование стальными арматурными стержнями или сварными каркасами допускается для временным конструкций, например, ограждений котлованов. Для постоянных конструкций следует применять мероприятия по антикоррозионной защите металла. В частности, пластиковые гофрированные трубки, заполненные цементным или полимерцементным раствором, надежно защищают арматуру и повышают коэффициент использования за счет увеличения площади боковой поверхности металлического сердечника. Металлические сердечники из проката черных металлов могут защищаться оцинкованием или специальными покрытиями.
1246 × 786 пикс.     Открыть в новом окне
1298 × 941 пикс.     Открыть в новом окне
Приложение Д

Определение длины и сплошности грунтоцементного элемента геофизическими методами

Определение длины и сплошности грунтоцементного элемента без выбуривания кернов может выполняться сейсмоакустическими методами.
Основной метод проведения испытаний по определению длины и сплошности грунтоцементного элемента - проверка эхо-тестером. Он основан на измерении времени между интервалами излучения упругой продольной волны в грунтоцементном элементе и прихода отраженных волн. Отраженная продольная волна возникает в местах изменения механического импеданса (механический импеданс пропорционален скорости продольной волны в свае и площади поперечного сечения). В однородном грунтоцементном элементе скорость постоянна и там, где находится нижний конец сваи, происходит отражение волны. В случае нарушения сплошности грунтоцементного элемента фиксируется локальное отражение сигнала.
Длина грунтоцементного элемента L вычисляется, исходя из измеренных интервала времени и скорости распространения продольной волны в грунтоцементе . Скорость распространения продольной упругой волны в грунтоцементе принимается равной 3600 м/с.
. (Д.1)
Для проведения испытаний применяется выровненная горизонтальная поверхность оголовка грунтоцементного элемента. Приемник эхо-тестера устанавливается и закрепляется на поверхности. Возбуждение упругой продольной волны выполняется механическим воздействием темпером (молотком) по поверхности в продольном направлении. Фиксируется интервал времени между начальным воздействием и приходом отраженного эхо-сигнала. Измерение выполняется с повторяемостью не менее шести раз в разных местах сечения, с накоплением данных по одной точке 6-8 раз. Точность определения длины грунтоцементного элемента зависит от шага квантования сигнала, равного 20 мкс и составляет 0,1 м. Прохождение сейсмоакустического сигнала по телу грунтоцементного элемента фиксируется с помощью рефлектограммы (пример рефлектограммы приведен на рисунке Д.1 (приложение Д)) по которой определяется сплошность материала.
1242 × 389 пикс.     Открыть в новом окне