(Утративший силу) Межгосударственный стандарт ГОСТ 27.002-89"Надежность в технике....

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Утративший силу
Назначенный срок службы и назначенный ресурс являются технико-эксплуатационными характеристиками и не относятся к показателям надежности (показателям долговечности). Однако при установлении назначенного срока службы и назначенного ресурса принимают во внимание прогнозируемые (иди достигнутые) значения показателей надежности. Если установлено требование безопасности, то назначенный срок службы (ресурс) должен соответствовать значениям вероятности безотказной работы по отношению к критическим отказам, близким к единице. Из соображений безопасности может быть также введен коэффициент запаса по времени.

К терминам "Техническое обслуживание", "Восстановление", "Ремонт"
(пп. 5.1; 5.2; 5.3)

Техническое обслуживание включает регламентированные в конструкторской (проектной) и (или) эксплуатационной документации операции по поддержанию работоспособного и исправного состояния. В техническое обслуживание входят контроль технического состояния, очистка, смазывание и т.п. [9].
Восстановление включает в себя идентификацию отказа (определение его места и характера), наладку или замену отказавшего элемента, регулирование и контроль технического состояния элементов объекта и заключительную операцию контроля работоспособности объекта в целом.
Перевод объекта из предельного состояния в работоспособное состояние осуществляется при помощи ремонта, при котором происходит восстановление ресурса объекта в целом. В ремонт могут входить разборка, дефектовка, замена или восстановление отдельных блоков, деталей и сборочных единиц, сборка и т.д. Содержание отдельных операций ремонта может совпадать с содержанием операций технического обслуживания [9].

К терминам "Обслуживаемый объект", "Необслуживаемый объект", "Ремонтируемый объект",
"Неремонтируемый объект", "Восстанавливаемый объект",
"Невосстанавливаемый объект" (пп. 5.4; 5.5; 5.8; 5.9)

При разработке объекта предусматривают выполнение (или невыполнение) технического обслуживания объектов на протяжении срока их службы, т.е. объекты делят на технически обслуживаемые и технически необслуживаемые. При этом некоторые неремонтируемые объекты являются технически обслуживаемыми.
Деление объектов на ремонтируемые и неремонтируемые связано с возможностью восстановления работоспособного состояния путем ремонта, что предусматривается и обеспечивается при разработке и изготовлении объекта. Объект может быть ремонтируемым, но не восстанавливаемым в конкретной ситуации.

К термину "Показатель надежности" (п. 6.1)

К показателям надежности относят количественные характеристики надежности, которые вводят согласно правилам статистической теории надежности [2, 3, 7, 12]. Область применения этой теории ограничена крупносерийными объектами, которые изготавливают и эксплуатируют в статистически однородных условиях и к совокупности которых применимо статистическое истолкование вероятности. Примером служат массовые изделия машиностроения, электротехнической и радиоэлектронной промышленности.
Применение статистической теории надежности к уникальным и малосерийным объектам ограничено. Эта теория применима для единичных восстанавливаемых (ремонтируемых) объектов, в которых в соответствии с нормативно-технической документацией допускаются многократные отказы, для описания последовательности которых применима модель потока случайных событий. Теорию применяют также к уникальным и малосерийным объектам, которые в свою очередь состоят из объектов массового производства. В этом случае расчет показателей надежности объекта в целом проводят методами статистической теории надежности по известным показателям надежности компонентов и элементов.
Методы статистической теории надежности позволяют установить требования к надежности компонентов и элементов на основании требований к надежности объекта в целом.
Статистическая теория надежности является составной частью более общего подхода к расчетной оценке надежности технических объектов, при котором отказы рассматривают как результат взаимодействия объекта как физической системы с другими объектами и окружающей средой [8]. Так при проектировании строительных сооружений и конструкций учитывают в явной или неявной форме статистический разброс механических свойств материалов, элементов и соединений, а также изменчивость (во времени и в пространстве) параметров, характеризующих внешние нагрузки и воздействия. Большинство показателей надежности полностью сохраняют смысл и при более общем подходе к расчетной оценке надежности. В простейшей модели расчета на прочность по схеме "параметр нагрузки - параметр прочности" вероятность безотказной работы совпадает с вероятностью того, что в пределах заданного отрезка времени значение параметра нагрузки ни разу не превысит значение, которое принимает параметр прочности. При этом оба параметра могут быть случайными функциями времени.
На стадии проектирования и конструирования показатели надежности трактуют как характеристики вероятностных или полувероятностных математических моделей создаваемых объектов. На стадиях экспериментальной отработки, испытаний и эксплуатации роль показателей надежности выполняют статистические оценки соответствующих вероятностных характеристик.
В целях единообразия все показатели надежности, перечисленные в настоящем стандарте, определены как вероятностные характеристики. Это подчеркивает также возможность прогнозирования значения этих показателей на стадии проектирования [3, 8, 9].
Показатели надежности вводят по отношению к определенным режимам и условиям эксплуатации, установленным в нормативно-технической и (или) конструкторской (проектной) документации.

К терминам "Единичный показатель надежности" и "Комплексный показатель надежности" (пп. 6.2; 6.3)

В отличие от единичного показателя надежности комплексный показатель надежности количественно характеризует не менее двух свойств, составляющих надежность, например безотказность и ремонтопригодность. Примером комплексного показателя надежности служит коэффициент готовности (п. 6.26) , стационарное значение которого (если оно существует) определяют по формуле
,
где Т - средняя наработка на отказ (п. 6.11);
- среднее время восстановления (п. 6.21).

К терминам "Расчетный показатель надежности", "Экспериментальный показатель надежности", "Эксплуатационный показатель надежности", "Экстраполированный показатель надежности" (пп. 6.4; 6.5; 6.6; 6.7)

Такую классификацию показателей надежности вводят в зависимости от способов их получения. Аналогичная классификация содержится в международных документах ИСО, МЭК и ЕОКК [4-6]. Наличие этих понятий должно предупредить путаницу, которая имеет место на практике при обсуждении численных данных, полученных разными способами и на разных стадиях жизненного цикла объекта.

К термину "Вероятность безотказной работы" (п. 6.8)

Вероятность безотказной работы определяется в предположении, что в начальный момент времени (момент начала исчисления наработки) объект находился в работоспособном состоянии. Обозначим через t время или суммарную наработку объекта (в дальнейшем для краткости называем t просто наработкой). Возникновение первого отказа - случайное событие, а наработка тау от начального момента до возникновения этого события - случайная величина. Вероятность безотказной работы P(t) объекта в интервале от 0 до t включительно определяют как
. (1)
Здесь - вероятность события, заключенного в скобках. Вероятность безотказной работы Р(t) является функцией наработки t. Обычно эту функцию предполагают непрерывной и дифференцируемой.
Если способность объекта выполнять заданные функции характеризуется одним параметром , то вместо (1) имеем формулу
274 × 30 пикс.     Открыть в новом окне
. (2)
где и - предельные по условиям работоспособности значения параметров (эти значения, вообще, могут изменяться во времени).
Аналогично вводят вероятность безотказной работы в более общем случае, когда состояние объекта характеризуется набором параметров с допустимой по условиям работоспособности областью значений этих параметров [8].
Вероятность безотказной работы P(t) связана с функцией распределения F(t) и плотностью распределения f(t) наработки до отказа:
; . (3)
Наряду с понятием "вероятность безотказной работы" часто используют понятие "вероятность отказа", которое определяется следующим образом: это вероятность того, что объект откажет хотя бы один раз в течение заданной наработки, будучи работоспособным в начальный момент времени. Вероятность отказа на отрезке от 0 до t определяют по формуле
. (4)
Точечные статистические оценки для вероятности безотказной работы от 0 до t и для функции распределения наработки до отказа даются формулами:
; , (5)
где N - число объектов, работоспособных в начальный момент времени;
n(t) - число объектов, отказавших на отрезке от 0 до t.
Для получения достоверных оценок объем выборки N должен быть достаточно велик [2, 3, 7].
Определение безотказной работы в соответствии с формулами (1) и (2) относится к объектам, которые должны функционировать в течение некоторого конечного отрезка времени. Для объектов одноразового (дискретного) применения вероятность безотказной работы определяют как вероятность того, что при срабатывании объекта отказ не возникает. Аналогично вводят вероятность безотказного включения (например в рабочий режим из режима ожидания).

К терминам "Гамма-процентная наработка до отказа", "Гамма-процентный ресурс", "Гамма-процентный срок службы", "Гамма-процентное время восстановления", "Гамма-процентный срок сохраняемости" (пп. 6.9; 6.15; 6.20; 6.24)

Перечисленные показатели определяют как корни уравнения
, (6)
где F(t) - функция распределения наработки до отказа (ресурса, срока службы).
В частности, гамма-процентную наработку до отказа определяют из уравнения
,
где P(t) - вероятность безотказной работы.
Как видно из формулы (6), гамма-процентные показатели равны квантилям соответствующих распределений. Если вероятности, отвечающие этим квантилям, выражают в процентах, то для показателей безотказности обычно задают значения 90; 95; 99; 99,5% и т.д. Тогда вероятность возникновения отказа на отрезке [0; t)] будет составлять 0,10; 0,05; 0,01; 0,005 и т.д. Задаваемые значения для критических отказов должны быть весьма близки к 100%, чтобы сделать критические отказы практически невозможными событиями. Для прогнозирования потребности в запасных частях, ремонтных мощностях, а также для расчета пополнения и обновления парков машин, приборов и установок могут потребоваться гамма-процентные показатели при более низких значениях , например при , что приближенно соответствует средним значениям.
Статистические оценки для гамма-процентных показателей могут быть получены на основе статистических оценок либо непосредственно, либо после аппроксимации эмпирических функций подходящими аналитическими распределениями. Необходимо иметь в виду, что экстраполирование эмпирических результатов за пределы продолжительности испытаний (наблюдений) без привлечения дополнительной информации о физической природе отказов может привести к значительным ошибкам.