(Действующий) ГОСТ Р 54412-2011/ISO/IEC/TR 24741:2007 Информационные технологии....

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий

ГОСТ Р 54412-2011/ISO/IEC/TR 24741:2007 Информационные технологии. Биометрия. Обучающая программа по биометрии

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Дата введения 01.07.2012
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 ПОДГОТОВЛЕН Научно-исследовательским и испытательным центром биометрической техники Московского государственного технического университета имени Н.Э.Баумана (НИИЦ БТ МГТУ им. Н.Э.Баумана) на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4, при консультативной поддержке Ассоциации автоматической идентификации "ЮНИСКАН/ГС1 РУС"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 355 "Технологии автоматической идентификации и сбора данных и биометрия"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 21 сентября 2011 г. N 326-ст
4 Настоящий стандарт идентичен международному документу ИСО/МЭК ТО 24741:2007* "Информационные технологии. Обучающая программа по биометрии" (ISO/IEC TR 24741:2007 "Information technology - Biometrics tutorial")
5 ВВЕДЕН ВПЕРВЫЕ
6 Некоторые элементы настоящего стандарта могут быть объектами патентных прав. Организации ИСО и МЭК не несут ответственности за установление подлинности каких-либо или всех таких патентных прав

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии
Введение

"Биометрическая аутентификация" представляет собой автоматическое распознавание человека на основе характерных биологических или поведенческих признаков. Данная область, в свою очередь, является частью более широкой области науки об идентификации человека.

К технологиям распознавания человека относят распознавание по отпечаткам пальцев, по геометрии лица, рук, по голосу и радужной оболочке глаза. При современном уровне технологического развития техника анализа ДНК не является полностью автоматической и подразумевает присутствие человека в качестве обработчика данных, поэтому термин "Биометрическая аутентификация" в этом случае неприменим (процесс не является автоматическим и быстрым, хотя в ближайшей перспективе может стать таковым).

Некоторые технологии (например, распознавание по радужной оболочке глаза) в большей степени основаны на биологических признаках, а некоторые (например, распознавание по динамике подписи) - на поведенческих признаках, но в то же время во всех техниках распознавания присутствуют как биологические, так и поведенческие элементы. Не существует полноценно "поведенческих" или "биологических" биометрических систем. "Биометрическую аутентификацию" часто называют "биометрией", несмотря на то, что этот более современный термин исторически употреблялся в контексте статистического анализа общих биологических данных.

Термин "биометрия" так же, как термин "генетика", часто воспринимается как моноструктура. Впервые термин "биометрия" появился около 1980 г. в словаре физической и информационной безопасности, заменив термин "автоматическая идентификация личности", который существовал в 70-х годах ХХ века. Биометрические системы распознают "личности" посредством распознавания "тел". Для осознания характерных для данных технологий функциональных возможностей и ограничений существенно отличие между личностью и телом.

В общем случае биометрия представляет собой распознавание поведения человека и биологических структур при помощи компьютера и больше связана с вычислительной техникой и анализом статистических эталонов, чем с науками о поведении и биологией.

В настоящее время биометрия применяется для распознавания личности во многих сферах деятельности, таких как контроль физического доступа и доступа к компьютеру, в правоохранительных органах, при голосовании, пересечении границы, в системе социального обеспечения и при выдаче водительских прав.

1 Область применения


Настоящий стандарт определяет структуру обучающей программы по биометрии. В обучающую программу включено описание архитектуры биометрических процессов и процессов как таковых. В приложениях настоящего стандарта представлены дополнительные сведения о национальных стандартах в области биометрии, термины и определения, применяющиеся в данных национальных стандартах в области биометрии.

2 Введение и общий обзор

2.1 Понятие "биометрическая технология"


Комплексный термин "биометрия" относится к количественному или статистическому анализу биологических характеристик. В этой связи мы заинтересованы во всех технологиях, которые предусматривают анализ характеристик человеческого организма для распознавания личности. Статистика применительно к биометрии обычно подразумевается в контексте биомедицины и является отдельной областью знаний. Наиболее распространенное определение биометрии применительно к задаче распознавания личности звучит следующим образом: биометрическая характеристика или признак (биометрический) - это уникальная, измеримая характеристика или признак, используемый для автоматического распознавания или верификации личности. Определение по ИСО/МЭК СТК 1/ПК 37 разделено на две части и в основном соответствует приведенному выше определению. Рекомендуется употреблять термин "биометрический" в качестве определения, в других случаях более уместным является употребление словосочетания "биометрическая характеристика" (как указано выше). Для употребления в качестве определения применяют термин:

биометрический - имеющий отношение к биометрии;

для употребления в качестве существительного применяют термин:

биометрия - автоматическое распознавание личности по поведенческим и биологическим характеристикам.

Таким образом, биометрические технологии связаны с физическими частями человеческого тела или индивидуальными признаками субъекта, и распознавание личности осуществляется либо на основе особенностей частей человеческого тела, либо на индивидуальных признаках субъекта, либо на том и другом одновременно. Следует отметить термин "автоматическое", указанный выше. На самом деле это значит, что биометрическая технология должна распознать или верифицировать субъекта быстро, автоматически и в режиме реального времени (более подробное определение различных биометрических технологий представлено в разделе 3). Наиболее распространенными физическими биометрическими характеристиками являются глаза, лицо, отпечатки пальцев, рука и голос, в то время как подпись, динамика работы с клавиатурой и походка являются наиболее распространенными поведенческими биометрическими характеристиками. Распознавание личности по ДНК на сегодняшний момент исключено, так как эта технология не является быстрым автоматическим процессом, но такое положение вещей может измениться уже через несколько лет.

2.2 История развития

На примитивном уровне биометрические характеристики применялись веками. Части нашего тела и особенности нашего поведения для распознавания использовались с незапамятных времен и продолжают использоваться в наши дни. Учение об отпечатках пальцев существовало еще в древнем Китае; мы часто помним и узнаем людей по их лицам, голосам, а подпись является общепринятым методом идентификации в банковской системе, легитимизации документов и во многих других сферах деятельности.

Современное учение о распознавании личности, основанное на физических измерениях, многим обязано служащему полиции Альфонсу Бертильону, который начал свою работу в конце 70-х годов XIX века [3], [11]. Система Бертильона включала в себя измерение нескольких величин: рост, вес, длина и ширина головы, толщина щек, длина туловища, стоп, ушей, предплечья, средних пальцев и мизинцев. Также в систему входили категории цвета и узора радужной оболочки глаза (РОГ). До 80-х годов XIX века система Бертильона применялась во Франции для идентификации рецидивистов. Некоторое время спустя система стала применяться в США для идентификации заключенных и применялась до 20-х годов XX века. Несмотря на то, что исследования отпечатков пальцев британским управляющим колонией в Индии Уильямом Гершелем началось еще в конце 50-х годов XIX века, эти знания оставались неизвестными в западном мире до 80-х годов XIX века [13], [18], пока не стали пропагандироваться Сэром Фрэнсисом Гальтоном в научных работах (1888) [16] и Марком Твеном в литературе (1893) [47]. Работы Ф.Гальтона также включали в себя технологию идентификации личности по характеристикам лица.

К середине 20-х годов XX века дактилоскопия полностью вытеснила систему Бертильона в Бюро Расследований США (вскоре сменившимся Федеральным Бюро Расследований). Впрочем, исследования новых методов идентификации личности продолжались только в научном мире. Анализ почерка как метод был признан в 1929 году [36], а идентификация личности по сетчатке глаза - в 1935 году [44].

Однако ни одна из описанных выше технологий не являлась "автоматической", поэтому ни одна из них не отвечает определению "биометрическая аутентификация", используемому в настоящем стандарте. Автоматические технологии требуют автоматического и преимущественно быстрого вычисления. Эксперименты в области автоматического распознавания голоса с использованием аналоговых фильтров [38] начались в 40-х годах XX века и начале 50-х годов XX века [10]. В 1960-х годах во время набирающей скорость революции в вычислительной технике распознавание паттернов голоса [39] и отпечатков пальцев [46] считалось первоочередным применением автоматической обработки сигнала. В 1963 году начал формироваться широкий и разнообразный рынок систем с использованием автоматического распознавания личности по отпечаткам пальцев, которые в перспективе могли бы применяться в "кредитных системах", "в системах промышленной и военной безопасности" и для "защиты персональных данных". Вскоре начались исследования по распознаванию лица с использованием вычислительной техники [6], [17]. B 70-x годах XX века были зарегистрированы первые действующие системы идентификации по отпечатку пальца и геометрии контура кисти руки (например, система "Identimat"), доложены результаты официальных испытаний биометрических систем [52], проанализированы характеристики приборов, входящих в состав биометрических систем [14], [27], и опубликованы результаты тестирования [28].

Параллельно с развитием технологии идентификации по геометрии контура кисти руки в 60-е и 70-е годы прошлого столетия быстрыми темпами развивалась дактилоскопическая биометрия. В течение этого времени многие организации с целью содействия сотрудникам правоохранительных органов подключились к разработке автоматической идентификации по отпечаткам пальцев, потому что сверка отпечатков пальцев с существующими в досье преступников происходила в лабораториях вручную, требовала большого штата и отнимала слишком много человеко-часов. В различных системах идентификации по отпечаткам пальцев, разработанных в 60-х и 70-х годах XX века для ФБР, уровень автоматизации был уже значительно выше, но все эти системы были рассчитаны только на сравнение отпечатков пальцев. Автоматизированные системы дактилоскопической идентификации (АСДИ) впервые были применены в конце 70-х годов прошлого столетия, из них следует отметить АСДИ Канадской королевской конной полиции, применявшуюся с 1977 года. С тех пор роль биометрии в правоохранительных органах значительно возросла, а АСДИ применяются в подавляющем большинстве правоохранительных подразделений по всему миру. Сегодня АСДИ может приобретать и гражданское население.

В 80-х годах XX века системы сканирования и распознавания отпечатков пальцев, а также системы распознавания голоса стали устанавливаться на персональные компьютеры для контроля доступа субъектов к хранящейся на них информации. Системы распознавания личности по РОГ, основанные на концепции, которая была запатентована в 80-х годах XX века [15], стали доступны только в середине 90-х годов [12]. На сегодняшний день существует более десяти различных подходов, использующихся в доступных для приобретения систем, включающих в себя распознавания личности по геометрии контура кисти руки и пальца, паттернам РОГ и отпечатка пальца, изображениям лица, голосу, динамике подписи, работы на клавиатуре, паттернам вен руки.

Современные системы верификации по голосу многим обязаны технологическим достижениям 70-х годов XX века, в то время как технологии верификации по подписи и распознавания по лицу сравнительно новые технологии. Переход от исследований и развития к области коммерции продолжается и сегодня. Во всем мире исследования университетов и поставщиков биометрических услуг для улучшения работы уже существующих биометрических технологий считаются намного важнее, чем развитие новых и более разнообразных технологий. Самой сложной частью процесса является выведение системы на рынок и подтверждение ее эксплуатационных характеристик. Для того, чтобы добиться полноценной работы системы, требуется время. Впрочем, такие системы уже сейчас применяются в самых разнообразных сферах и успешно доказывают свою работоспособность.

3 Обзор технологий


На сегодняшний день биометрические системы представлены многообразием видов и размеров. Биометрические системы представлены оборудованием, программным обеспечением, комплектующими, комплектами разработчика программного обеспечения и законченными решениями. Поставщики выводят такие системы на рынок и продают напрямую или через различные системы сбыта, например, специализирующиеся на системной интеграции, стратегическом партнерстве или через фирмы-посредники, которые вносят добавленную стоимость. Все биометрические системы работают по одним и тем же принципам: захват данных, извлечение данных и сопоставление данных. Так как до сих пор биометрические технологии строятся на анализе различных частей человеческого тела, то работа каждой технологии и системы различается. В данном разделе рассматривается функционирование каждой биометрической технологии в рамках четырех стадий: захват данных, извлечение данных, сопоставление данных и принятие решения.

3.1 Технологии, построенные на анализе изображения глаза


В настоящее время биометрические технологии, построенные на анализе глаза, характеризуются высочайшей точностью и способны найти различия даже между близнецами. Эти технологии могут быть разделены на две отдельные технологии, анализирующие биометрические характеристики РОГ и сетчатки глаза.
3.1.1 Характеристики изображения РОГ
РОГ представляет собой цветное кольцо текстурированной материи вокруг зрачка. Каждая РОГ имеет уникальную структуру, особый комплекс паттернов. Она представляет собой комбинацию особых характеристик, таких как лакуны, углубления, нити, ямки, радиальные кольца и жилки. Считается, что искусственное воспроизведение РОГ невозможно из-за ее уникальных свойств, поскольку не существует двух одинаковых РОГ. РОГ тесно связана с человеческим мозгом, поэтому считается, что ее нельзя использовать для биометрического распознавания после смерти. По этой причине невозможно создать искусственную РОГ и, скорее всего, при использовании трупного материала РОГ не удастся "обмануть" биометрическую систему. Это означает, что идентификация мертвого тела с использованием зарегистрированных данных РОГ невозможна, в то время как код ДНК успешно применяется и после смерти субъекта при условии отсутствия влияния жары и соленой воды.

В большинстве систем полутоновое изображение РОГ получают в ближнем инфракрасном (ИК) диапазоне с целью максимизировать детали в случае темных глаз, некоторые системы способны захватывать данные о РОГ также и в цвете. Данная процедура должна проходить при хорошем освещении. Контактные линзы без рисунка не мешают захвату данных, а наличие солнечных очков и очков с линзами не допускается, так как это может повлиять на процесс захвата данных.

Уникальные признаки РОГ извлекаются из захваченного образца при помощи блока извлечения признаков. Далее эти признаки РОГ преобразовываются в уникальный математический код и сохраняются в виде шаблона (биометрического эталона) для конкретного субъекта.
3.1.2 Характеристики сетчатки глаза
Сетчатка глаза представляет собой слой кровеносных сосудов, находящихся на внутренней оболочке глаза. Аналогично РОГ сетчатка глаза формирует уникальный рисунок, и считается, что ее невозможно применять для биометрической идентификации после смерти субъекта.

Необходимо провести точную регистрацию, включающую в себя расположение глаза на одной оси с оптической осью системы захвата данных для получения оптимального считывания. Глаз позиционируется перед системой захвата данных так, чтобы расстояние варьировалось от восьми сантиметров до одного метра. Человек должен через окулярную трубку проследить за серией отметок и расположить их на одной оси. После этой процедуры сканер фокусирует глаз в достаточной степени для того, чтобы захватить рисунок сетчатки глаза.

Уникальное расположение кровеносных сосудов сетчатки глаза фиксируется блоком извлечения признаков. Далее эти признаки преобразовываются в уникальный математический код и сохраняются в виде шаблона (биометрического эталона) для конкретного субъекта.

3.2 Технологии, построенные на анализе изображения лица


Основным элементом в распознавании людей является лицо. Автоматическая идентификация личности с помощью анализа лица является сложной процедурой, для которой требуются сложные методы искусственного интеллекта и машинного обучения. Рядом биометрических компаний и исследовательских институтов разработаны системы распознавания лица, в которых для регистрации биометрических данных используется стандартное видеоизображение или тепловизионное изображение (термограмма) лица. На результаты сравнения лиц, которое проводится в биометрических системах, могут повлиять такие факторы, как возрастные изменения внешности человека, растительность на лице, наличие очков и положение головы. Для проведения корректного сопоставления новых биометрических образцов с ранее зарегистрированными шаблонами необходимо использовать машинное обучение.

В методах распознавания лица, основанных на видеоизображении, используется изображение лица или серия изображений лиц, захватываемых видеокамерой. Точность расположения лица субъекта и условия освещения могут повлиять на работу системы. Обычно захватывается изображение лица целиком, на котором затем могут проставляться контрольные точки лица. Например, расположение глаз, рта и ноздрей может быть таким, что будет создан уникальный шаблон. Трехмерные модели лица могут создаваться разными способами, такими как проецирование ИК-сетки ("структурированного света"), слияние нескольких изображений или использование информации о полутонах в отдельном изображении. На тепловизионом изображении лица отображается количество тепла, вызванное притоком крови к лицу. Тепловизор захватывает невидимый, вызванный теплом рисунок кровеносных сосудов, находящихся под кожей. Так как при захвате изображений лица ИК-камерами освещение не является необходимым, системы могут захватывать изображения в темноте. Однако ИК-камеры являются более дорогими по сравнению с другими видами видеокамер.

С помощью специальных алгоритмов или нейтронной сети в ядре распознавания биометрической системы изображение лица преобразуется в шаблон, а далее - в уникальный математический код. Этот код сохраняется в виде шаблона (биометрического эталона) для конкретного субъекта.

3.3 Технологии, построенные на анализе гребней отпечатка пальца

3.3.1 Сканирование папиллярного узора
Биометрия изображения отпечатков пальцев является точным методом биометрической идентификации и верификации. Большинство АСДИ сопоставления "один-ко-многим" анализируют мелкие уникальные отметки на отпечатке пальца, называемые минуциями. Их можно определить как окончания гребней на отпечатке пальца или бифуркации (ветви, произведенные гребнями на отпечатке пальца). Некоторые системы распознавания отпечатков пальцев также анализируют мелкие потовые поры на пальце, которые аналогично минуциям расположены уникально, создавая возможность отличить отпечаток пальца одного человека от другого. Также могут быть проанализированы плотность изображения пальца или расстояние между гребнями.

На отпечатки пальцев могут влиять некоторые условия. Например, при сборе данных грязные, сухие или потрескавшиеся подушечки пальцев значительно снижают качество захватываемого изображения отпечатка пальца. На качество изображения отпечатка пальца могут повлиять также возраст, пол и национальность субъекта. Еще одним значительным фактором является то, каким образом субъект прикладывает палец к биометрическому сканеру. Изображение отпечатка пальца может быть неудовлетворительного качества, если палец слишком сильно прижат к поверхности биометрического сканера. Поставщики принимают указанные выше проблемы во внимание, и таким образом биометрические сканеры проектируются с учетом эргономических требований для оптимизации процесса получения отпечатка пальца.

Основным различием между различными дактилоскопическими техниками, существующими на рынке, является способ захвата изображения отпечатка пальца. В системах верификации "один-к-одному" применяются четыре основные техники захвата данных: оптическая, тактильная, или термальная, емкостная и ультразвуковая. В большинстве систем сопоставления "один-ко-многим" при захвате изображения отпечатка пальца используется оптический метод или электронное сканирование изображений с листа бумаги.
3.3.2 Верификация изображения отпечатка пальца

Техника получения изображения оптическим методом включает в себя использование пучка света, преломляемого призмой. Субъект прикладывает палец к стеклянной поверхности биометрического сканера, которая называется планшетом. Свет попадает на отпечаток пальца, и захватывается оттиск.

В тактильной, или термальной, технике для получения данных об отпечатке пальца используется сложный силиконовый чип. Субъект прикладывает палец к датчику-чипу, чувствительному к теплу или давлению, оказываемому пальцем. Данные об отпечатке пальца захватываются.

Емкостные силиконовые датчики измеряют электрический заряд и выдают электрический сигнал в тот момент, когда палец оказывается на поверхности датчика. Основным элементом емкостной техники, так же как в тактильной или термальной технике, является датчик-чип. Емкостная техника заключается в анализе низших и высших точек гребней и впадин в отпечатке пальца. Электрический сигнал подается в тот момент, когда гребни отпечатка пальца контактируют с датчиком. Углубления не генерируют сигнал. Именно благодаря такому непостоянству электрического заряда воспроизводится изображение отпечатка пальца.

Захват изображения отпечатка пальца ультразвуковым методом основан на использовании звуковых волн, которые находятся вне диапазона слышимости человеческого уха. Палец прикладывают к биометрическому сканеру, и акустические волны измеряют плотность рисунка отпечатка пальца.

Блок извлечения признаков выделяет признаки отпечатка пальца. Уникальный математический код отпечатка сохраняется в виде шаблона (биометрического эталона) для конкретного субъекта.
3.3.3 Идентификация изображения отпечатка пальца
При идентификации "один-ко-многим" субъекты регистрируются при помощи оптического прямого сканирования, описанного выше для верификации изображения отпечатка пальца. АСДИ системы правоохранительных органов, также известные как станции регистрации, захватывают все десять отпечатков. Версия систем АСДИ, применяемая в гражданских целях, не захватывает все десять отпечатков пальцев и эффективно работает при наличии одного или двух отпечатков. Скрытые отпечатки (полученные на месте преступления или чернильные изображения на бумаге) также могут быть захвачены системой АСДИ при помощи планшетного сканера.

В случае АСДИ процесс биннинга отпечатков пальцев оптимизирует процесс выделения. Данные о минуциях извлекаются и сохраняются в виде шаблона (биометрического эталона) для конкретного субъекта.

Новый образец, захваченный либо устройством прямого считывания папиллярного узора, либо техникой сканирования скрытых или чернильных отпечатков, сопоставляется с имеющимися контрольными шаблонами в базе данных. Если использовался биннинг, то сопоставление будет проводиться с бином, содержащим идентичные признаки, а также с новым отпечатком.
3.3.4 Технологии, построенные на анализе изображения ладоней

Биометрия ладоней может быть поставлена в один ряд с биометрией отпечатков пальцев, особенно в технологии АСДИ. Гребни, впадины и минуции есть как на отпечатках пальцев, так и на ладони. Признаки ладони чаще всего анализируются при помощи техники оптического захвата. Данная область биометрической промышленности, в частности, ориентирована на правоохранительные органы, так как скрытые отпечатки ладоней так же крайне полезны в раскрытии преступлений, как и отпечатки пальцев. Однако поставщики обращают внимание на рынок контроля доступа и надеются заняться разработкой версий своей продукции применительно к гражданской сфере.

Характеристики биометрии ладоней преимущественно используются в идентификации "один-к-одному", а процесс захвата по сути аналогичен оптической технике, предназначенной для регистрации отпечатков пальцев. Система регистрации отпечатка ладони захватывает ладонь в тот момент, когда она находится на биометрическом сканере. Скрытые и чернильные отпечатки ладоней также могут быть отсканированы и помещены в систему, как в случае с системами АСДИ.

Данные о минуциях извлекаются блоком извлечения признаков, признаки ладони сохраняются в виде шаблона (биометрического эталона) в базе данных.

Новый отпечаток, захваченный при помощи прямого сканирования, с использованием техники сканирования скрытых или расположенных на бумаге отпечатков, сопоставляется с базой данных контрольных шаблонов.

3.4 Технологии, построенные на анализе геометрии контура кисти руки

Для идентификации по геометрии контура кисти руки необходимы одно или несколько двухмерных изображений кисти руки, на которых определяется форма и измеряется длина пальцев и фаланг. Данная технология применяется с начала 80-х годов XX века преимущественно в области контроля доступа. Несмотря на то, что технология идентификации по геометрии контура кисти руки, как и технология идентификации по геометрии контура пальца (см. ниже), не обеспечивает максимальную точность распознавания, эта технология удобна в применении, и ее основное преимущество заключается в большой пропускной способности. По этой причине технологии идентификации по геометрии контура кисти руки и геометрии контура пальца часто применяются в парках отдыха для повторных проходов субъектов.

Субъект помещает кисть руки на считывающее устройство, располагая пальцы в соответствии с инструкцией по правильному положению пальцев. Зеркало отражает свет горизонтально вдоль тыльной стороны руки, создавая двумерную тень от кисти руки. Камера, расположенная над рукой, захватывает изображение. Далее выполняются измерения характеристик выбранных точек на кисти руки.

Блок извлечения признаков преобразует измерения в уникальный числовой идентификатор, на основе которого для данного субъекта создается шаблон (биометрический эталон).

Геометрия контура кисти руки используется преимущественно при верификации (сравнении "один-к-одному"). Полученный образец сравнивается с базой данных шаблонов (контрольных эталонов).

3.5 Технологии, построенные на анализе геометрии контура пальца

Многие поставщики биометрических услуг используют для идентификации личности геометрию контура пальцев или результаты измерения формы пальцев. В данной технологии используются те же принципы, что и в технологии идентификации по геометрии контура кисти руки. В зависимости от используемой биометрической системы может анализироваться геометрия контура одного или двух пальцев. Проводится измерение таких уникальных характеристик пальцев, как ширина, длина, толщина и размер фаланг.

Системы идентификации по геометрии контура пальцев могут проводить верификацию (сравнение "один-к-одному") или идентификацию (сравнение "один-ко-многим"). Основными преимуществами данных систем являются устойчивость к сбоям и большая пропускная способность.

Как и в системах верификации по отпечаткам пальцев, метод захвата изображений зависит от используемой системы. В настоящее время на рынке представлены две основные технологии получения изображений.

Первая заключается в измерении геометрии контура двух или более пальцев. Зеркало отражает свет горизонтально вдоль тыльной стороны кисти руки, создавая двухмерную тень от кисти руки. Камеры, расположенные над рукой, получают изображения и в трех координатах проводят измерение характеристик контура указательного и среднего пальцев правой либо левой руки.

Вторая технология заключается в том, что субъект помещает палец в специальный тоннель, в котором проводится измерение характеристик контура пальца в трех координатах.

Далее блок извлечения признаков обрабатывает результаты измерений и создает для данного субъекта шаблон (биометрический эталон).

3.6 Технологии, построенные на анализе динамики подписи

Биометрия подписи часто называется верификацией динамики подписи (ВДП) и заключается в анализе того, как мы пишем свое имя или визируем документ. Важно отметить, что метод заключается не в анализе самой подписи, а в анализе процесса ее получения. Именно в этом отличие ВДП от анализа законченных подписей на бумаге. При помощи технологии ВДП можно извлечь и измерить множество характеристик. К примеру, угол, под которым пишущий держит ручку, время, которое пишущий отводит на написание, скорость движения ручки и акселерацию, силу, с которой пишущий держит ручку, и то, сколько раз ручка отрывалась от бумаги, - все эти показатели могут быть рассмотрены как уникальные поведенческие характеристики. Технология ВДП не основана на анализе статичного изображения, так что даже в том случае, если подпись скопирована, субъект подделки подписи должен знать о динамике ее изготовления, а отсутствие этих знаний значительно усложнит подделку подписи.

Другим преимуществом биометрических технологий, построенных на анализе динамики подписи, является их распространенность в качестве метода подтверждения личности. Вместе с этим, технологии, построенные на анализе динамики подписи, применяются в ситуациях, когда необходимо наложить на человека юридические обязанности, например, в случае подписания контракта. Вышеизложенные факторы привели к применению биометрии подписи в разных сферах деятельности: от проверки документов, предоставляющих право на соцобеспечение, до управления документооборотом и использования электронной подписи.

Стоит отметить, что данные о динамике подписи могут быть захвачены при помощи электронного планшета без ведома субъекта.

Данные о подписи могут быть захвачены при помощи чувствительного пера или электронного планшета. В первом случае суть метода заключается в наличии чувствительных элементов-датчиков внутри пера, а второй метод основан на том, что планшет регистрирует уникальные характеристики динамики подписи. Одной из вариаций двух этих методов является акустическая эмиссия, которая измеряет звук, производимый ручкой во время контакта с бумагой. Как правило, для системы ВДП, как и для других биометрических техник, необходимо, чтобы субъект ввел свою подпись несколько раз, только в этом случае система может сформировать профиль характеристик подписи.

После выделения уникальных признаков подписи блок извлечения признаков кодирует данные и сохраняет в виде шаблона (биометрического эталона) для конкретного субъекта.

3.7 Технологии, построенные на анализе голоса

Распознавание субъекта является биометрической технологией верификации и идентификации говорящего по голосу. Не стоит путать распознавание субъекта с похожей не биометрической технологией распознавания речи, используемой для распознавания слов при диктовке или автоматической обработке инструкций, переданных по телефону.

Звук человеческого голоса является следствием резонанса, возникающего в речевом тракте. Особенности голоса определяются длиной речевого тракта и формами ротовой и носовой полостей.

В технологии измерения голоса может применяться либо текстонезависимый, либо текстозависимый метод. Другими словами, при захвате голоса можно использовать специально подготовленные вопросы, отвечая на которые, субъект будет произносить определенный текст, сочетающий фразы, слова или цифры (текстозависимый метод), или субъект может произносить любые фразы, слова или цифры без определенного задания (текстонезависимый метод). На сегодняшний день текстозависимые (с вопросом) техники доминируют в сфере коммерческих систем распознавания субъекта по голосу.

Технологии распознавания субъекта по голосу особенно полезны в приложениях, связанных с телефонами. Мы все разговариваем по телефону, а биометрическая система может быть встроена в частную или общественную телефонную сеть. Однако на работу систем распознавания субъекта влияют окружающие субъект шумы и помехи на линиях.

Субъект произносит в микрофон заранее подготовленную (текстозависимый метод) либо произвольную фразу (текстонезависимый метод). Данный процесс обычно повторяется несколько раз во время регистрации, чтобы позволить системе сформировать подходящий профиль голоса.

Блок извлечения признаков выделяет уникальный голосовой сигнал и создает шаблон (биометрический эталон). Предпочтительным методом является верификация "один-к-одному". Диктор произносит в микрофон фразу, далее происходит сопоставление нового образца голоса с биометрическим шаблоном.

3.8 Технологии, построенные на анализе рисунка вен

Биометрические технологии, анализирующие образцы рисунков вен, характеризуются высокой аутентификационной точностью. Вены, которые находятся в подкожной области тела каждого человека, формируют уникальный рисунок. Даже рисунки генетически идентичных близнецов имеют отличия. Более того, рисунок вен представляет собой данные внутри человеческого тела, которые не могут быть кем-то украдены при помощи обычного фотоаппарата или сведены каким-то образом с объектов, с которыми контактировал субъект (по сравнению с отпечатками пальцев). Рисунок вен может быть захвачен при помощи ИК-излучения. Кожа отражает ИК-излучение, поэтому может быть получено изображение. С другой стороны, более темное изображение рисунка вен получается в том случае, когда пониженный уровень гемоглобина в вене поглощает ИК-излучение. Таким образом, система захвата изображения способна получить уникальный рисунок вен посредством более темного изображения.

В данной технологии выбираются такие части человеческого тела (ладонь, палец, запястье и тыльная сторона ладони), в которых присутствует уникальный рисунок кровеносных сосудов, следовательно, биометрический сканер может зарегистрировать эти данные. Рисунки вен извлекаются, кодируются блоком извлечения признаков и сохраняются в виде шаблона (биометрического эталона) для конкретного субъекта.

На данный момент существует два метода регистрации изображений вен, построенные на разных типах: отражение и передача. При первом типе на конкретный участок тела наводится ИК-излучение и проводится фотографирование. При втором типе ИК-излучение направляется сквозь часть человеческого тела, после чего проводится фотографирование.

При помощи техник обработки признаков изображения можно получить четкие и устойчивые паттерны вен.

3.9 Технологии, построенные на анализе динамики работы на клавиатуре