(Действующий) СП 11-105-97 Инженерно-геологические изыскания для строительства....

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
Наличие блуждающих токов в земле определяется с помощью измерения разности потенциалов между двумя точками на поверхности земли при разносе измерительных электродов равном 100 м, располагающихся в двух взаимноперпендикулярных направлениях через каждые 1000 м трассы. Замеры производятся через каждые 5-10 секунд в течение 10-15 минут.
6.1.17. Обнаружение и локализация в плане и разрезе отдельных технических объектов (инженерных коммуникаций, погребенных фундаментов и пр.). Выбор методов осуществляется на основе априорных знаний о свойствах искомого объекта. Наиболее информативными могут быть РЛЗ, микромагнитная съемка, ЕП, ДЭМП, ДИП.

6.2. Изучение состава, строения, состояния и свойств грунтов

6.2.1. Изучение состава, строения, состояния и свойств грунтов выполняется параллельно с изучением геологического строения массива, но может являться и самостоятельной целью и выполняться по специально составленной программе.
6.2.2. Определение физико-механических характеристик грунтов по данным геофизических исследований следует производить на основе корреляционных зависимостей, установленных для определенных литологических разновидностей пород с учетом их региональных особенностей. При отсутствии корреляционных связей, полученных для грунтов изучаемого объекта (наиболее обоснованные оценки), могут быть использованы корреляционные зависимости для грунтов-аналогов (приближенные оценки). Примеры таких связей, полученных на основе обобщения данных экспериментальных исследований различных грунтов в лабораторных и натурных условиях, приведены в аналитической форме в приложении Е, и в графической форме в приложениях Ж-Н.
6.2.3. При определении физико-механических свойств грунтов в массиве на основе использования корреляционных связей, установленных при изучении образцов, следует учитывать масштабный эффект для конкретной геологической среды.
6.2.4. Определение литолого-петрографического состава пород. Решение задачи основано на зависимости электрических, упругих и других физических свойствах пород, определяемые при геофизических исследованиях, от их литолого-петрографического состава (приложения Ж, И). Установление зависимостей между геофизическими параметрами и литолого-петрографическими признаками состава грунтов проводится при использовании параметрических измерений в скважинах, горных выработках, на образцах и на обнажениях.
Основными геофизическими методами при решении задачи являются электроразведка на постоянном токе, ВЭЗ, ВЭЗ ВП, сейсморазведка МПВ на продольных и поперечных волнах. При наличии скважин используются ВСП, сейсмопросвечивание, различные виды каротажа.
6.2.5. Определение трещиноватости и пористости скальных пород. Решение задачи основано на различии скоростей распространения продольных и поперечных волн и электросопротивления в скальных породах при различной степени трещиноватости. С помощью сочетания сейсморазведки в наземном и скважинном вариантах с ультразвуковыми измерениями скоростей упругих волн в образцах (керне) скальных пород определяется общая пустотность (пористость) пород как в зоне аэрации, так и в зоне полного водонасыщения. Применение электроразведки требует установление корреляционных связей УЭС со степенью трещиноватости и пористости пород путем измерения электрических свойств пород в полевых условиях и в лаборатории на образцах.
Основными геофизическими методами при решении задачи является наземная сейсморазведка МПВ на продольных и поперечных волнах, скважинная сейсморазведка методами ВСП и просвечивания между скважинами, УЗК, измерения скоростей упругих волн в образцах пород. Вспомогательными методами являются электроразведка ВЭЗ и КВЭЗ.
6.2.6. Определение водно-физических свойств пород. Оценка коэффициента фильтрации дисперсных пород производится по корреляционным зависимостям между коэффициентом фильтрации пород и их удельным электрическим сопротивлением, а также поляризуемостью и диэлектрической проницаемостью, устанавливаемым для конкретных условий. В скальных породах такие зависимости устанавливаются между коэффициентом фильтрации и скоростью продольных волн.
6.2.7. Определение деформационных и прочностных свойств скальных пород. Задача решается, как правило, с помощью комплекса сейсмоакустических методов. Для определения статического модуля упругости, модуля деформации, предела прочности на одноосное сжатие используются установленные корреляционные зависимости между указанными параметрами с одной стороны и скоростями продольных и поперечных волн и динамическими модулями упругости - с другой (приложение Е).
Скорости упругих волн и, следовательно, упругие модули (с использованием информации о плотности пород в массиве) определяются: в скважинах методами сейсмоакустического каротажа и просвечивания, ВСП, с поверхности - сейсморазведкой МПВ на продольных и поперечных волнах, в лаборатории - путем измерения скоростей ультразвуковых волн в образцах.
Исследования в широком диапазоне частот позволяют учитывать масштабный эффект и обоснованно осуществлять переход от параметров, полученных на малых объемах грунтов, к параметрам изучаемого массива.
6.2.8. Определение физических свойств дисперсных пород (плотности, влажности, пористости). Основными методами определения плотности и влажности дисперсных пород (в том числе мерзлых) являются радиоизотопные измерения. Вспомогательными методами являются сейсморазведочные и электроразведочные, результаты которых используются для определения искомых параметров грунта по установленным корреляционным зависимостям между плотностью, влажностью и пористостью с одной стороны и скоростями упругих волн и электросопротивлением - с другой (приложения Е, Ж, И, Л).
В качестве основных методов используются каротажные методы ГГМ, ННМ, а в качестве косвенных - наземная и скважинная сейсморазведка на продольных и поперечных волнах (МПВ, ВСП, сейсмопросвечивание), а также электроразведка ВЭЗ, каротаж КС и РВП.
6.2.9. Определение прочностных и деформационных свойств дисперсных (талых и мерзлых) пород выполняется по установленным или уточненным и вновь устанавливаемым в процессе работ корреляционным зависимостям между указанными величинами и упругими параметрами: скоростями упругих волн, модулями упругости, сдвига, динамическим коэффициентом Пуассона (приложения Е, М).
Скорости продольных и поперечных волн пород в полевых условиях определяются с помощью наблюдений с поверхности и во внутренних точках среды методами МПВ, ВСП, СП. В лабораторных условиях используются ультразвуковые измерения на образцах.
6.2.10. Изучение строения скальных массивов, состоящих из разновеликих зон, блоков и элементов и степени их неоднородности выполняется с помощью разночастотных сейсмоакустических методов, позволяющих определять скорости продольных и поперечных волн для различных по размерам блоков и элементов массива. Для количественной оценки неоднородности строятся так называемые масштабные кривые, отражающие взаимосвязь между скоростями упругих волн и изучаемыми размерами (линейными или объемными) среды.
Скорости продольных и поперечных волн в массиве и его частях определяются с помощью наблюдений с поверхности, во внутренних точках среды и на образцах методами МПВ, ВСП, СП на частотах от 50-100 Гц до 10-20 кГц, а также с помощью ультразвуковых исследований.
6.2.11. Изучение степени неоднородности массивов дисперсных пород проводится путем построения кривых распределения скоростей упругих волн и характеристик их поглощения, а также электросопротивлений в зависимости от масштаба изучаемой среды. Методы получения упругих и электрических параметров стандартные - МПВ, ВСП, сейсмопросвечивание, ВЭЗ, РВП.
6.2.12. Изучение напряженного состояния пород основано на взаимосвязи параметров упругих волн со значениями действующих напряжений в массиве и на зависимости уровня акустической и электромагнитной эмиссии от изменений напряженного состояния массива. При качественном изучении напряженного состояния скальных и дисперсных пород используются МПВ, ВСП, сейсмопросвечивание, измерение акустической и электромагнитной эмиссии. Количественная оценка напряжений в массиве пород определяется с помощью комплекса разночастотных сейсмоакустических методов при использовании установленных зависимостей скоростей упругих волн от давления.
6.2.13. Определение минерализации подземных вод и засоленности дисперсных пород производится с помощью методов резистивиметрии и электроразведки ВЭЗ, каротажа КС и РВП. Полученные этими методами значения УЭС используются для определения минерализации подземных вод, засоленности дисперсных талых и мерзлых пород по зависимостям, приведенных в приложении К.
6.2.14. Определение льдистости дисперсных пород проводится по установленным корреляционным зависимостям между объемной льдистостью с одной стороны и скоростями упругих волн и электросопротивлением - с другой, полученными для различных видов дисперсных грунтов (приложение Л). Скорости продольных волн и электросопротивление пород для интерпретации результатов полевых работ определяют с помощью ультразвукового каротажа и каротажа КС и РВП.
6.2.15. Оценка криогенного строения дисперсных пород производится по результатам определений упругих волн и электросопротивлений, измеренных в горизонтальной и вертикальной плоскостях. С помощью номограммы (приложение Н) оцениваются элементы криогенного строения. Скорости продольных волн для этой цели получают с помощью комплекса скважинных методов: ультразвуковой каротаж (УЗК) и межскважинное ультразвуковое просвечивание (МП). Для получения аналогичных значений электросопротивлений используется комплекс из наземного метода ВЭЗ и скважинного метода КС.
6.2.16. Определение коррозионной агрессивности (КА) грунтов и подземных вод выполняется с соблюдением требований ГОСТ 9.602-89. КА грунта по отношению к стали характеризуется значениями удельного электрического сопротивления (УЭС) грунта и средней плотностью катодного тока (). КА среды (грунта или воды) по отношению к свинцовой или алюминиевой оболочке кабеля, а также по отношению к бетонным сооружениям определяется по результатам химического анализа и по величине водородного показателя рН образцов. УЭС грунта определяется в полевых условиях и на образцах, плотность катодного тока - только на образцах грунта.

6.3. Изучение геологических и инженерно-геологических процессов

6.3.1. Изучение геологических и инженерно-геологических процессов, их выявление и наблюдение за динамикой развития является одной из приоритетных задач при инженерно-геологических изысканиях. В процессе ее решения изучаются все вопросы, связанные с задачами, перечисленными в п.4.1, не только в пространственных координатах, но и во времени.
6.3.2. Наблюдение за изменением уровня подземных вод, как правило, проводится с помощью сейсморазведки МПВ и электроразведки ВЭЗ, а также метода протонного магнитного резонанса ПМР. В качестве вспомогательного метода применяется ВЭЗ ВП и РЛЗ.
6.3.3. Определение направления и скорости движения подземных вод осуществляется с помощью режимных наблюдений методами резистивиметрии, расходометрии в одной или нескольких скважинах, а также с использованием гидрогеологического варианта МЗТ.
6.3.4. Обнаружение мест разгрузки подземных вод, утечек бытовых и промышленных вод является задачей, аналогичной задаче, изложенной в п.6.1.15, и решается методами, перечисленными в этом пункте.
6.3.5. Наблюдение за влажностным режимом дисперсных пород зоны аэрации выполняется при контроле качества искусственных грунтов возводимых земляных сооружений. Оно осуществляется методами, позволяющими оценивать влажность пород в коренном залегании - радиоизотопными и электрометрическими (п.6.2.8).
6.3.6. Наблюдение за изменением глубины сезонного и техногенного промерзания и протаивания дисперсных и скальных пород должно осуществляться по методике режимных измерений, с применением в качестве основных методов - ВЭЗ, МПВ, ВСП, различных видов каротажа, термометрии, РВП, а также вспомогательных - ПС, ЧЭМЗ, РЛЗ.
6.3.7. Наблюдение за изменением напряженного состояния, возникновением и развитием трещин производится наиболее эффективно с помощью сейсмометрических методов - МПВ, ВСП, сейсмического просвечивания, методом акустической эмиссии, а также с привлечением различных видов каротажа, резистивиметрии в скважинах и водоемах, гравиметрии. В качестве вспомогательных методов рекомендуется использовать ЕИЭМПЗ и ЕП.
6.3.8. Выявление, наблюдение и прогноз смещения масс горных пород. При исследованиях процессов смещения масс горных пород с помощью геофизических методов могут решаться следующие задачи:
локализация мест нарушения сплошности массивов горных пород (методы электроразведки и сейсморазведки в модификациях векторных наблюдений и каротажа скважин, газово-эманационная съемка, гравиразведка, методы ЕИЭМПЗ и акустической эмиссии);
определение времени начала смещений и его прогноз (те же методы в модификациях высокоточных режимных наблюдений);
определение скоростей и величины смещений (режимные профильные и скважинные работы различными методами при геодезической привязке точек наблюдения).
6.3.9. Изучение опасных геологических и инженерно-геологических процессов с помощью геофизических методов следует выполнять в соответствии с пунктами СП 11-105-97 (часть II):
изыскания в районах развития склоновых процессов - п.4.2.6;
изыскания в районах развития карста - п.5.2.5;
изыскания в районах развития процессов переработки берегов водохранилищ - п.6.2.6;
изыскания в районах развития селей - п.7.2.5;
изыскания в районах развития подтопления - п.8.2.7.
Выбор методов для решения задач, перечисленных в каждом из этих пунктов, производится в соответствии с требованиями разделов 6.1-6.3 и приложением Д.

6.4. Сейсмическое микрорайонирование

6.4.1. Задача сейсмического микрорайонирования заключается в оценке влияния местных условий на характеристики сейсмических колебаний. Местные условия определяются строением, составом и свойствами грунтов, рельефом, обводненностью и некоторыми другими факторами.
6.4.2. При выполнении сейсмического микрорайонирования определение строения, состава и свойств грунтов, положения уровня подземных вод производится в соответствии с пп.6.1.2, 6.1.5, 6.2.8. Скорости продольных и поперечных волн и характеристики их затухания и поглощения, используемые для оценки приращения сейсмической интенсивности и составления модели сейсмического разреза с целью проведения последующих расчетов, определяются с помощью наземной (МПВ, одиночное сейсмозондирование) и скважинной (ВСП, СП, МП, СК) сейсморазведки. Амплитудно-частотные характеристики ожидаемых сейсмических колебаний определяются инженерно-сейсмологическими методами, которые не принято относить к собственно геофизическим исследованиям, а именно: регистрацией землетрясений малых энергий, микросейсм, реже взрывов и сильных землетрясений.
6.4.3. Расчет количественных характеристик сейсмических воздействий (ускорений, преобладающих периодов и продолжительности колебаний, акселерограмм, спектров реакции и т.д.) проводится с использованием специальных компьютерных программ на основе моделей сейсмического разреза. Требуемые по СНиП II-7-81* акселерограммы могут также подбираться из банка данных или синтезироваться по ряду входных параметров.

7. СОСТАВ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ ПРИ ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ ИЗЫСКАНИЯХ