(Действующий) Национальный стандарт РФ ГОСТ Р 58568-2019 "Оптика и фотоника....

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

Действующий
2.3.2 Нанофотоника
2.3.2.1 нанофотоника: Раздел фотоники, связанный с изучением и практическим применением физических явлений, возникающих при взаимодействии фотонов с объектами нанометровых размеров, в т.ч. с созданием устройств, в которых для генерации или поглощения света используют наноструктуры.
2.3.2.2
нанотехнология: Применение научных знаний для изучения, проектирования, производства и управления строением материальных объектов преимущественно в нанодиапазоне с использованием зависящих от размера и структуры свойств этих объектов или присущих им явлений, которые могут отсутствовать у отдельных атомов и молекул или аналогичных макрообъектов.Примечание - Производство и управление строением включают в себя синтез материалов.[ГОСТ ISO/TS 80004-1-2017, статья 2.3]
2.3.2.3
наноэлектроника: Раздел электроники, изучающий методы проектирования и изготовления функциональных электронных устройств, компоненты которых имеют размеры в нанодиапазоне.Примечание - Производство и управление строением включают в себя синтез материалов.[ГОСТ Р 57257-2016/ISO/TS 80004-12:2016, статья 6.2]
2.3.2.3.1 квантовая проволока: Объект нитеобразной формы с поперечными размерами, удовлетворяющими условию размерного квантования. Потенциальная энергия электрона в таком объекте ниже, чем за его пределами, и за счет малых поперечных размеров (как правило, 1-10 нм) движение электрона ограничено в двух измерениях.
Примечание - Движение вдоль оси нити остается свободным, в то время как движение в других направлениях квантуется, и его энергия может принимать лишь дискретные значения.
2.3.2.3.2
квантовая точка: Нанообъект, линейные размеры которого по трем измерениям близки длине волны электрона в материале данного нанообъекта и внутри которого потенциальная энергия электрона ниже, чем за его пределами, при этом движение электрона ограничено во всех трех измерениях.[ГОСТ ISO/TS 80004-6-2016, статья 2.8]
2.3.2.3.3 квантовая яма: Тонкий плоский слой полупроводникового материала (как правило, толщиной 1-10 нм), внутри которого потенциальная энергия электрона ниже, чем за его пределами, таким образом, движение электрона ограничено в одном измерении.
Примечание - Движение в направлении, перпендикулярном к плоскости квантовой ямы, квантуется, и его энергия может принимать лишь некоторые дискретные значения, называемые уровнями размерного квантования.
2.3.2.3.4 квантовые кристаллы: Кристаллы, характеризующиеся большой амплитудой нулевых колебаний атомов (колебаний вблизи Т = 0 K), сравнимой с кратчайшим межатомным расстоянием, вследствие чего они обладают необычными физическими свойствами, объяснимыми только в рамках квантовой теории.
Примечание - Из известных на Земле веществ только изотопы гелия 3Не и 4Не при давлениях свыше Па образуют квантовые кристаллы. Квантовые эффекты наблюдаются также у кристаллов Ne и в меньшей степени у кристаллов др. инертных газов. В недрах нейтронных звезд, возможно, существуют квантовые кристаллы, состоящие из нейтронов.
2.3.2.4 лазерный пинцет: Устройство для удержания нано- и микрочастиц вблизи фокуса специально сформированного лазерного луча, использующееся для целенаправленного перемещения таких частиц.
2.3.2.5 поляритон: Составная квазичастица, возникающая при взаимодействии фотонов и элементарных возбуждений среды.
2.3.2.6 плазмон: Квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания плотности заряда свободного электронного газа.
2.3.2.6.1 плазменный резонанс: Возбуждение поверхностного плазмона на его резонансной частоте внешней электромагнитной волной (в случае наноразмерных металлических структур называется локализованным плазмонным резонансом).
2.3.2.7 нанолазер: Устройство, генерирующее или усиливающее поверхностные плазмоны.
2.3.3 Биофотоника
2.3.3.1 биофотоника: Раздел фотоники, связанный с изучением и практическим использованием взаимодействия фотонов с биологическими объектами; сюда же обычно относят биомедицинские использования лазерного излучения.
2.3.3.2 оптогенетика: Новая область нейробиологии, объединяющая оптические и генетические методы исследования нейронных связей (реакций, цепей) у интактных млекопитающих и других животных на высоких скоростях (единицей измерения являются миллисекунды), что необходимо для понимания процессов обработки информации мозгом.
2.3.3.3 лазерная биостимуляция: Активизация естественных физиологических процессов в биологических тканях под воздействием лазерного излучения.
2.3.3.4 фотосенсибилизатор: Природное или искусственно синтезированное вещество, способное поглощать свет и индуцировать химические реакции, которые в его отсутствие не происходят.
2.3.3.5 фотодинамическая терапия; ФДТ: Метод терапии злокачественных опухолей, основанный на введении в организм фотосенсибилизаторов, локализующихся преимущественно в опухоли, и воздействии света с определенной длиной волны.
Примечание - Под действием света продуцируются цитотоксические агенты, прежде всего, синглетный кислород.
2.3.4 Оптическая сенсорика
2.3.4.1 оптическая сенсорика: Раздел фотоники, связанный с разработкой принципов, методов и устройств диагностики с использованием оптического излучения.
2.3.4.2 волоконно-оптическая сенсорика: Раздел оптической сенсорики, целью которого является разработка новых принципов и методов диагностики с использованием волоконно-оптических компонентов.
2.3.5 Оптоэлектроника (фотоэлектроника)
2.3.5.1 оптоэлектроника (фотоэлектроника): Область науки и техники, изучающая эффекты взаимодействия между электромагнитными волнами оптического диапазона и электронами вещества и охватывающая проблемы создания оптоэлектронных приборов, в которых эти эффекты используются для получения, обработки, передачи, хранения и отображения информации.
2.3.6 кремниевая фотоника: Раздел фотоники, в рамках которой исследуются возможности создания фотонных интегральных схем на одном кристалле кремния.
2.3.7 Оптическая информатика (оптоинформатика)
2.3.7.1 оптическая информатика (оптоинформатика): Раздел фотоники, связанный с созданием технологий передачи, приема, обработки, хранения и отображения информации с помощью потока фотонов.
2.3.7.2 радиофотоника: Раздел оптоинформатики, решающий проблемы обработки СВЧ-сигналов с помощью оптических процессов, а также проблемы передачи, приема и обработки информации путем совместного использования электромагнитных волн оптического и СВЧ-диапазонов и построения на такой основе специфических элементов, приборов и систем.
2.3.7.3 оптическая связь: Способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического диапазона.
2.3.7.4 квантовые коммуникации: Раздел оптической связи, связанный с изучением и практическим применением методов передачи информации фотонами, находящимися в неклассических (квантовых) состояниях.
2.3.7.5 лазерные информационные системы: Информационные системы, в которых для переноса и/или обработки информации используется лазерное излучение.
2.3.7.6 бюджет мощности оптической системы связи: Разность между отношением сигнал - шум на приемнике оптической системы связи (в дБ) и требуемым для ее работы отношением сигнал - шум (в дБ).
2.3.7.7 интрадинный прием сигнала: Детектирование оптического сигнала в когерентных сетях связи, заключающееся в смешивании сигнала с опорным излучением, при условии, что несущая частота опорного излучения отличается от несущей частоты сигнала на величину, меньшую полосы сигнала.
2.3.7.8 дисперсия волоконно-оптической линии связи: Различие временных задержек компонентов оптического сигнала в волоконно-оптической линии связи, обусловленное различием их групповых скоростей, вызывающее искажение формы и длительности информационных сигналов.
2.3.7.9 квантовая криптография: Система защиты передаваемой по сети оптической связи информации, в которой используются квантовые свойства частиц, находящихся в неклассических состояниях.
2.3.7.10 когерентное детектирование: Принцип детектирования оптических сигналов, заключающийся в том, что оптический сигнал смешивается с опорным излучением (ОИ) и суммарное излучение поступает на несколько фотодиодов, преобразующих его в электрический сигнал биений.
Примечание - Для получения полной информации об оптическом сигнале необходимо использовать четыре канала: по два канала для каждой из двух ортогональных поляризаций.
2.3.7.11 когерентные системы связи: Системы связи, использующие когерентное детектирование.
2.3.7.12 когерентный оптический приемник с цифровой обработкой сигналов: Когерентный оптический приемник, в котором амплитудная и фазовая информация, переносимая оптическим сигналом, преобразуется в электрическую форму, оцифровывается и обрабатывается для компенсации рассинхронизации частот и фаз источника опорного излучения и несущей оптического сигнала, для компенсации хроматической и поляризационной модовой дисперсии, для синхронизации и фазовой диверсификации, а также для декодирования цифровой информации.
2.3.7.13 компенсация дисперсии: Восстановление формы и длительности информационных сигналов путем компенсации задержек компонент оптического сигнала в волоконно-оптической линии связи с дисперсией.
2.3.7.14 электронная компенсация дисперсии: Компенсация дисперсии, осуществляемая в приемнике путем обработки детектированного электрического сигнала.
Примечание - Электронная компенсация дисперсии особенно эффективна в приемниках когерентных систем связи с цифровой обработкой сигналов.
2.3.7.15 технология Li-Fi: Беспроводная система передачи информации, закодированной в модуляции излучения светодиодов, параллельно используемых для освещения.